STANDARD REDUCTION POTENTIALS, E°

The measure of a substance's relative oxidizing power is its **standard reduction potential**, E° , defined by the following conventions:

- 1. The *standard reduction potential*, E° , is defined for a half reaction of the type $Ox + ne^{-} \rightleftharpoons Red$
- 2. All *E*° values assume 1 M concentrations and/or 1 atm partial pressure for all species at 25°C. These define *standard conditions*.
- 3. For the half reaction $2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$ under standard conditions, we define $E^0 \equiv 0$ volt (exactly). All other standard reduction potentials for other couples are determined relative to this arbitrary standard.
- 4. Oxidants that gain electrons better than $H^+(aq)$ [stronger oxidants than $H^+(aq)$] have $E^0 > 0$ (i.e., +) for their reduction $Ox + ne^- \Rightarrow Red$.
- 5. Oxidants that gain electrons worse than $H^+(aq)$ [weaker oxidants than $H^+(aq)$] have $E^0 < 0$ (i.e., –) for their reduction $Ox + ne^- \neq Red$.
- 6. The standard oxidation potential is the negative of the standard reduction potential and refers to the potential of the half reaction Red \Rightarrow Ox + ne^- . Thus,

$$Ox + ne^- \rightleftharpoons Red E^o_{red} = E^o$$
(standard reduction potential)

Red
$$\rightleftharpoons$$
 Ox + $ne^ E^{\circ}_{ox} = -E^{\circ}$ (standard oxidation potential)

We will always use E° (without subscript) to refer to the reduction potential of a couple.