## Chem 116 <br> Test 2 Practice Problems

1. Consider the equilibrium $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)$ at $1000^{\circ} \mathrm{C}$.
a. Write the expression for $K_{c}$.
b. At $1000{ }^{\circ} \mathrm{C}, K_{c}=1.603 \mathrm{~mol} / \mathrm{L}$. A mixture of $\mathrm{C}(s)$ with $0.750 \mathrm{~mol} / \mathrm{L} \mathrm{CO}(g)$ and $0.500 \mathrm{~mol} / \mathrm{L}$ $\mathrm{CO}_{2}(g)$ is found at this temperature. Does the system need to shift right, shift left, or remain unchanged to reach equilibrium?
c. What is the value of $K_{p}$ at $1000^{\circ} \mathrm{C}$ ?
$\left[K_{p}=K_{c}(R T)^{\Delta n} ; R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol} ; \mathrm{K}={ }^{\circ} \mathrm{C}+273\right]$
d. What is the partial pressure of $\mathrm{CO}(\mathrm{g})$ in an equilibrium mixture in which the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ is $0.100 \mathrm{~atm} ?$
e. If the total pressure on the system at equilibrium is increased, will the equilibrium shift left, shift right, or remain unchanged?
f. For the reaction $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g), \Delta H^{\circ}=+172.5 \mathrm{~kJ}$. Would raising the temperature on an equilibrium mixture $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)$ favor $\mathbf{C O}(g)$ formation, $\mathrm{CO}_{2}(g)$ formation, or no change in the equilibrium?
g. At higher temperature will the value of $K_{c}$ increase, decrease, or remain the same?
2. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ is first order. The half-life of this reaction at $45^{\circ} \mathrm{C}$ is 21.8 min .
a. What is the rate constant, $k$, for this reaction at $45^{\circ} \mathrm{C}$ ?
b. A one-liter vessel is filled with 0.500 mol of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ at $45^{\circ} \mathrm{C}$. How much $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ will remain after 54.5 min .?
c. A student obtains data for the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ over time at $100^{\circ} \mathrm{C}$. How could she use these data to obtain the value of $k$ at $100^{\circ} \mathrm{C}$.
d. How could the student use her data to obtain the activation energy for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ ? How could she obtain a value for the collision constant, $A$, for the reaction?
3. For the reaction $\mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g), \Delta H^{\circ}=-200 \mathrm{~kJ}$. If the activation energy of the forward reaction is 10 kJ , what is the activation energy for the reverse reaction? Sketch a potential energy diagram for the reaction.
4. At $750^{\circ} \mathrm{C}, K_{c}=1.30$ for the reaction

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)
$$

In a one-liter vessel at $750^{\circ} \mathrm{C}, 1.20 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), 1.20 \mathrm{~mol}$ of $\mathrm{CO}(\mathrm{g}), 0.100 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$ and 0.100 mol of $\mathrm{CO}_{2}(\mathrm{~g})$ are mixed. What will be the concentrations of all species when equilibrium is established?
5. At $425^{\circ} \mathrm{C}, K_{c}=54.8$ for the equilibrium

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

If 0.500 mol each of $\mathrm{H}_{2}(g), \mathrm{I}_{2}(g)$, and $\mathrm{HI}(g)$ are placed in a one-liter vessel, what will be the concentrations of all species when equilibrium is established at $425^{\circ} \mathrm{C}$ ?
6. The reaction $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NOCl}(g)$ might proceed by the following mechanism:

$$
\begin{array}{rll}
\mathrm{NO}+\mathrm{Cl}_{2} & \stackrel{k_{1}}{\stackrel{k_{1}}{\longrightarrow}} \mathrm{NOCl}_{2} & \text { (fast equilibrium) } \\
\mathrm{NOCl}_{2}+\mathrm{NO} & \xrightarrow{k_{2}} 2 \mathrm{NOCl} & \text { (slow) }
\end{array}
$$

a. Write the rate law expression for the rate-determining step.
b. Identify any species that are reaction intermediates.
c. Write the equilibrium expression, $K_{c}$, for the first step.
d. Derive the rate law expression that should be observed experimentally if this is the correct mechanism in terms of the observable concentration(s) of [NO] and/or [ $\mathrm{Cl}_{2}$ ]. [Hint: Use your equilibrium expression in part c to write an expression to substitute for an unobservable species that may appear in your rate expression for the rate-determining step.]
e. If the observed rate of the reaction is Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$, is the proposed mechanism plausible?
7. Determine the rate law and calculate the value of the rate constant (with the appropriate units) for the reaction

$$
\mathrm{A}+\mathrm{B} \rightarrow \text { products }
$$

given the following data:

| Exp. | $[\mathrm{A}]$ | $[\mathrm{B}]$ | Rate, M/s |
| :---: | :---: | :---: | :---: |
| $\# 1$ | 0.125 | 0.125 | $1.04 \times 10^{-4}$ |
| $\# 2$ | 0.375 | 0.125 | $9.36 \times 10^{-4}$ |
| $\# 3$ | 0.375 | 0.250 | $9.36 \times 10^{-4}$ |

8. Determine the rate law and calculate the value of the rate constant (with the appropriate units) for the reaction

$$
\mathrm{A}_{2}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{AB}+\mathrm{AC}
$$

given the following data:

| Exp. | $\left[\mathrm{A}_{2}\right], \mathrm{M}$ | $[\mathrm{B}], \mathrm{M}$ | $[\mathrm{C}], \mathrm{M}$ | Rate, $\mathrm{M} \cdot \mathrm{s}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\# 1$ | 0.125 | 0.111 | 0.702 | $1.07 \times 10^{-3}$ |
| $\# 2$ | 0.500 | 0.111 | 0.702 | $2.14 \times 10^{-3}$ |
| $\# 3$ | 0.125 | 0.444 | 0.702 | $4.28 \times 10^{-3}$ |
| $\# 4$ | 0.125 | 0.444 | 0.351 | $4.28 \times 10^{-3}$ |

9. Determine the rate law and calculate the value of the rate constant (with the appropriate units) for the reaction

$$
\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \text { products }
$$

given the following data:

| Exp. | [A], M | $[\mathrm{B}], \mathrm{M}$ | $[\mathrm{C}], \mathrm{M}$ | Rate, $\mathrm{M} \cdot \mathrm{s}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\# 1$ | 0.128 | 0.384 | 0.702 | $3.56 \times 10^{-3}$ |
| $\# 2$ | 0.384 | 0.384 | 0.702 | $1.07 \times 10^{-2}$ |
| $\# 3$ | 0.128 | 0.128 | 0.702 | $3.56 \times 10^{-3}$ |
| $\# 4$ | 0.128 | 0.128 | 0.351 | $8.90 \times 10^{-4}$ |

