Heat Capacity and Temperature Change

From thermochemistry we have seen that the temperature change caused by gain or loss of a certain amount of heat, q, depends upon the heat capacity of the substance, C_{p}, according to the equation

$$
q=C_{p} \Delta T
$$

However, this equation is valid only for small changes in temperature, over which C_{p} is nearly constant. Actually, the heat capacity itself changes with temperature. For example, the graph below shows the variation of molar heat capacity $(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$ for water throughout its liquid range.

As this suggests, it would not be accurate to calculate, say, the amount of heat required to warm a given sample of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ using a single value of C_{p}. In careful work, it is necessary to take the sum of the heats required to effect a series of very small temperature changes that add up to the range of interest, using a different nearly constant value of C_{p} for each small increment. For our purposes, where a high degree of accuracy is not required, we can use an average value of C_{p} for the temperature range of interest, so long as we confine our calculations to cases involving relatively limited temperature changes.

