Mechanism of a Reaction

The mechanism of a chemical reaction is the set of microscopic steps by which atoms and molecules are converted from reactants into products.

The macroscopic stoichiometry of a conventional balanced chemical equation rarely is the same as the mechanism.

Mechanisms are deduced indirectly from experimental data on how fast reactions proceed under various conditions - the kinetics of the reaction.

Example of a Simple Reaction and Its Proposed Mechanism

$$
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g) \quad \Delta H_{\mathrm{rxn}}=-184.6 \mathrm{~kJ}
$$

Proposed Mechanism:

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot \\
& \mathrm{Cl} \cdot+\mathrm{H}_{2} \rightarrow \mathrm{HCl}+\mathrm{H} \cdot
\end{aligned}
$$

$$
\mathrm{H} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{HCl}
$$

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

nothing about the overall stoichiometry of the reaction suggests that this is the mechanism!

Defining Rate

Rate for a chemical reaction can be defined in terms of the change in concentration (or amount) of reactants or products with time.

Imeally, for any point in the course of the reaction, Rate should be defined so as to give the same number regardless of the species (reactant or product) on which it is based.

- Rate should be defined on the basis of the stoichiometry of the reaction.
- Rate is defined to be a positive number.

Concentration Changes with Time

Rate Based on Loss of [$\left.\mathrm{Cl}_{2}\right]$

$$
\begin{gathered}
\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \rightarrow 2 \mathrm{NOCl}(g) \\
\text { Rate }=\frac{-\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}=\frac{-\left(\left[\mathrm{Cl}_{2}\right]_{2}-\left[\mathrm{Cl}_{2}\right]_{1}\right)}{t_{2}-t_{1}}
\end{gathered}
$$

- $\quad\left[\mathrm{Cl}_{2}\right]_{2}-\left[\left[\mathrm{Cl}_{2}\right]_{1}\right.$ is negative, because Cl_{2} is being consumed.
- Negative sign in $-\Delta\left[\mathrm{Cl}_{2}\right] / \Delta t$ makes Rate a positive number.

Rate Based on Loss of [NO]

$$
\begin{aligned}
& \mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \rightarrow 2 \mathrm{NOCl}(g) \\
& \frac{-\Delta[\mathrm{NO}]}{\Delta t}=\frac{-\left([\mathrm{NO}]_{2}-[\mathrm{NO}]_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

- $-\Delta[\mathrm{NO}] / \Delta t=2 \times\left\{-\Delta\left[\mathrm{Cl}_{2}\right] / \Delta t\right\}$, because 2 mol NO are consumed for every $1 \mathrm{~mol} \mathrm{Cl}_{2}$ consumed.
- To avoid ambiguity, we define rate on the basis of [NO] as

$$
\text { Rate }=\frac{-1 / 2 \Delta[\mathrm{NO}]}{\Delta t}=\frac{-1 / 2\left([\mathrm{NO}]_{2}-[\mathrm{NO}]_{1}\right)}{t_{2}-t_{1}}
$$

Rate Based on Gain of [NOCl]

$$
\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \rightarrow 2 \mathrm{NOCl}(g)
$$

$$
\text { Rate }=\frac{+1 / 2 \Delta[\mathrm{NOCl}]}{\Delta t}=\frac{+1 / 2\left([\mathrm{NOCl}]_{2}-[\mathrm{NOCl}]_{1}\right)}{t_{2}-t_{1}}
$$

- $\quad \Delta[\mathrm{NOCl}] / \Delta t$ is positive, so Rate will be positive without the need to add a negative sign.
- $\Delta[\mathrm{NOCl}] / \Delta t=2 \times\left\{-\Delta\left[\mathrm{Cl}_{2}\right] / \Delta t\right\}$, because 2 mol NOCl are produced for every $1 \mathrm{~mol} \mathrm{Cl}_{2}$ consumed.

Defining Rate for a General Reaction

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D} \\
\text { Rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=+\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=+\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}
\end{gathered}
$$

Rate and Slope

- If the interval between t_{1} and t_{2} is small, the curve is approximately a straight line, whose slope is the negative of the Rate:

$$
\text { Rate }=\frac{-\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}=- \text { slope }
$$

Instantaneous Rate

- The approximation that the curve is nearly a straight line becomes better as Δt becomes smaller.
- At the limit where Δt becomes infinitesimally small, the segment of the curve is a straight line, the negative of whose slope gives the instantaneous rate at a point in time.
- To indicate instantaneous rate, we use the notation d instead of Δ :

$$
\text { Rate }=\frac{-d\left[\mathrm{Cl}_{2}\right]}{d t}=- \text { slope }
$$

Changing Rate and Equilibrium

- The magnitude of slope, and therefore Rate, declines over time.

Reaction rate slows down as the reaction proceeds.

- At $t_{\text {eq }}$, when slope $=0$, Rate $=0$, and the reaction has reached equilibrium.

Rate $=0$ does not mean the reaction has stopped, just that it has reached equilibrium.

Initial Rate

108
Because rate changes over time, comparisons between reaction rates need to be made at the same elapsed time.

For convenience, comparisons are often made between initial rates, taken at the very beginning of the reaction $(t=0)$.

Differential Rate Law

The differential rate law is a mathematical equation that shows the dependence of rate on concentration.

$$
\text { Rate }=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n} \ldots
$$

where $m=$ order with respect to [A] $n=$ order with respect to [B] $m+n+\ldots=$ overall order $=\omega$ $k=$ rate constant for the reaction at a certain temperature

The explicit form of the differential rate law for a particular reaction must be experimentally determined and cannot in general be deduced from the overall stoichiometry of the reaction.

If ω is the overall order of the rate law, the units of k will be

$$
k=(\text { conc. units })^{-(\omega-1)}(\text { time })^{-1}
$$

The larger the value of k, the higher the rate will be for any particular set of concentrations.

Hypothetical First-Order Reaction, $\mathbf{A} \rightarrow \mathbf{B}$

$$
\text { Rate }=k[\mathrm{~A}]
$$

Effect of \boldsymbol{k} Value on Rate of a First-Order Reaction

$$
\rightarrow-k=2.0 \rightarrow-k=3.0 \rightarrow-k=4.0 \rightarrow-k=5.0
$$

Some Reactions and Their Experimental Rate Laws
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
$2 \mathrm{NO}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(g)$
$\mathrm{NO}(g)+\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 3 \mathrm{NO}_{2}(g)$
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
$\mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g)$
Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
$14 \mathrm{H}_{3} \mathrm{O}^{+}(a q)+2 \mathrm{HCrO}_{4}^{-}(a q)+6 \mathrm{I}^{-}(a q) \rightarrow$

$$
2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{I}_{2}(a q)+22 \mathrm{H}_{2} \mathrm{O}(l)
$$

$$
\text { Rate }=k\left[\mathrm{HCrO}_{4}^{-}\right]\left[\mathrm{I}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Note: Orders do not reliably match stoichiometric coefficients.

Example: Determine the rate law and value of k for the following reaction at 300 K .

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{mol} / \mathrm{L})$	Initial Rate $(\mathrm{mol} / \mathrm{L} / \mathrm{sec})$
0.25	1.0×10^{-5}
0.50	2.0×10^{-5}

$$
\text { Rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

Example: Determine the rate law and value of k for the following reaction at $800^{\circ} \mathrm{C}$.

$$
2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{N}_{2}(g)
$$

$p_{\mathrm{H}_{2}}(\mathrm{~atm})$	$p_{\mathrm{NO}}(\mathrm{atm})$	Initial Rate $(\mathrm{atm} / \mathrm{min})$
0.13	0.39	0.050
0.26	0.39	0.10
0.13	0.78	0.20
0.26	0.78	0.40

$$
\text { Rate }=k p_{\mathrm{H}_{2}} p_{\mathrm{NO}}^{2}
$$

Example: Determine the rate law for the following hypothetical reaction:

$$
\mathrm{H}_{2}(g)+\mathrm{A}_{2}(g) \rightarrow 2 \mathrm{HA}(g)
$$

$\left[\mathrm{H}_{2}\right](\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{A}_{2}\right](\mathrm{mol} / \mathrm{L})$	Initial Rate $(\mathrm{mol} / \mathrm{L} / \mathrm{sec})$
0.30	0.30	0.020
0.30	1.20	0.040
1.20	0.30	0.080

$$
\text { Rate }=k\left[\mathrm{H}_{2}\right]\left[\mathrm{A}_{2}\right]^{1 / 2}
$$

Example: Determine the differential rate law expression and value of k for the reaction

$$
\mathrm{A}+\mathrm{B}_{2}+\mathrm{C} \rightarrow \mathrm{AB}+\mathrm{BC}
$$

given the following kinetic data:

Exp.	[A], M	$\left[\mathrm{B}_{2}\right], \mathrm{M}$	[C], M	Rate, $\mathrm{M} \cdot \mathrm{s}^{-1}$
$\# 1$	0.128	0.111	0.702	1.07×10^{-3}
$\# 2$	0.384	0.111	0.702	3.21×10^{-3}
$\# 3$	0.128	0.444	0.702	2.14×10^{-3}
$\# 4$	0.128	0.444	0.351	2.14×10^{-3}

$$
\text { Rate }=k[\mathrm{~A}]\left[\mathrm{B}_{2}\right]^{1 / 2}
$$

Example: Consider the following hypothetical reaction and rate data:

$$
\mathrm{A}+\mathrm{B} \rightarrow \text { products }
$$

$[\mathrm{A}](\mathrm{mol} / \mathrm{L})$	$[\mathrm{B}](\mathrm{mol} / \mathrm{L})$	Initial rate $(\mathrm{mol} / \mathrm{L} / \mathrm{min})$
5.30×10^{-2}	7.20×10^{-2}	3.70×10^{-3}
6.42×10^{-2}	7.20×10^{-2}	4.07×10^{-3}
6.42×10^{-2}	9.32×10^{-2}	5.99×10^{-3}

$$
\text { Rate }=k[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{3 / 2}
$$

