Autoprotolysis of Water

Pure water has an equilibrium with $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-} called autoprotolysis or autodissociation.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \\
& \text { base }_{1}
\end{aligned}+\underset{\substack{\mathrm{H}_{2} \mathrm{O} \\
\operatorname{acid}_{2}}}{\mathrm{Hacid}}
$$

For water at $25^{\circ} \mathrm{C}$

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
$$

(t) K_{w}, the ion product or dissociation constant of water, is obeyed for all aqueous solutions, except at extremely high concentration.

Neutral, Acidic, Basic

For neutral water,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}
$$

For an acidic solution,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>10^{-7} \mathrm{M} \text { and }\left[\mathrm{OH}^{-}\right]<10^{-7} \mathrm{M}
$$

For a basic solution,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<10^{-7} \mathrm{M} \text { and }\left[\mathrm{OH}^{-}\right]>10^{-7}
$$

pH and pOH

\checkmark The letter " p " in front of a quantity means "the negative logarithm of" the quantity.
pH and pOH are defined as

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

- The relationship between pH and pOH is derived from K_{w} :

$$
\begin{aligned}
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& \log K_{w}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=-14.00 \\
& -\log K_{w}=\mathrm{p} K_{w}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]=14.00 \\
& \mathrm{p} K_{w}=\mathrm{pH}+\mathrm{pOH}=14.00
\end{aligned}
$$

Neutral, Acidic, Basic

For neutral water,

$$
\mathrm{pH}=\mathrm{pOH}=7
$$

For an acidic solution,

$$
\mathrm{pH}<7 \text { and } \mathrm{pOH}>7
$$

For a basic solution, $\mathrm{pH}>7$ and $\mathrm{pOH}<7$

For all solutions

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

Simultaneous Equilibria

Solution of a Strong Acid in Water - $5.0 \times 10^{-2} \mathbf{M ~ H C l}$

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+ \\
& \\
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+ \\
& \mathrm{Cl}^{-} \mathrm{OH}^{-}
\end{aligned}
$$

Add	5.0×10^{-2}	10^{-7}	0	10^{-7}
Get	0	$\sim 5.0 \times 10^{-2}$	5.0×10^{-2}	$<10^{-7}$

Charge Balance Expression - expresses the total concentration of one ion in terms of equivalent concentrations of ions of the opposite charge.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {acid }}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {water }}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]}
\end{aligned}
$$

(F) Mass Balance Expression - accounts for the distribution of the analytical concentration (what was added) in terms of concentrations of species formed through dissociation (what you get) in solution.

$$
C=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {acid }}=\left[\mathrm{Cl}^{-}\right]=5.0 \times 10^{-2} \mathrm{M}
$$

Solution of a Strong Acid in Water - $5.0 \times 10^{-2} \mathbf{M ~ H C l}$ Simplifying Assumptions

Substituting the mass balance result into the previous charge balance expression gives

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-2}+\left[\mathrm{OH}^{-}\right]
$$

In pure water $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$, which is negligible by comparison to $5.0 \times 10^{-2} \mathrm{M}$. Moreover, this is an acidic solution, so by LeChatelier's principal we expect that $\left[\mathrm{OH}^{-}\right]$ $\ll 1.0 \times 10^{-7} \mathrm{M}$. Therefore, we can ignore $\left[\mathrm{OH}^{-}\right]$in our charge balance expression and write

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx 5.0 \times 10^{-2} \mathrm{M}
$$

From this we calculate

$$
\mathrm{pH}=-\log \left(5.0 \times 10^{-2}\right)=1.30
$$

Only the HCl was a major source of $\mathrm{H}_{3} \mathrm{O}^{+}$in this solution.
To find the concentration of hydroxide ion in the solution, we use $K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$:

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right]=K_{w} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1.0 \times 10^{-14} / 5.0 \times 10^{-2} \\
& =2.0 \times 10^{-13} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {water }}
\end{aligned}
$$

Strong Acid in Water

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

For solutions of a strong acid in water at moderate concentrations $\left(C_{\mathrm{HA}}>10^{-5} \mathrm{M}\right)$, assume virtually all $\mathrm{H}_{3} \mathrm{O}^{+}$comes from the acid. Thus,

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=C_{\mathrm{HA}}} \\
\mathrm{pH}=-\log C_{\mathrm{HA}} \\
\mathrm{pOH}=14.00-\mathrm{pH}
\end{gathered}
$$

Strong Base in Water

$$
\mathrm{M}(\mathrm{OH})_{n}(a q) \rightarrow \mathrm{M}^{n+}(a q)+n \mathrm{OH}^{-}(a q)
$$

For solutions of a strong base in water at moderate concentrations $\left(C_{\mathrm{B}}>10^{-5} \mathrm{M}\right)$, assume virtually all OH^{-}comes from the base. Thus,

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=n C_{\mathrm{B}}} \\
\mathrm{pOH}=-\log n C_{\mathrm{B}} \\
\mathrm{pH}=14.00-\mathrm{pOH}
\end{gathered}
$$

Extreme Dilution

Any acid or base at extreme dilution $\left(<10^{-7} \mathrm{M}\right)$ makes no significant contribution to the total $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$ concentration in the solution.

Thus, water is the principal source of both ions:

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}} \\
\mathrm{pH}=\mathrm{pOH}=7.00
\end{gathered}
$$

