Weak Acid Equilibria

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

- K_{a} is a constant for a given acid at a particular temperature regardless of the analytical concentration of the acid.
- The magnitude of K_{a} indicates acid strength.
\checkmark Strong acids have $K_{a} \gg 1$.
\checkmark Weak acids have $K_{a}<1$.
\checkmark The more negative the exponent power of ten, the weaker the acid is and the less tendency it has to dissociate.

Leveling of Strong Acids

When any very strong acid $\left(K_{a} \gg 1\right)$ is added to water, its strength is said to be leveled to that of $\mathrm{H}_{3} \mathrm{O}^{+}$.

- The hydronium ion is the strongest acid that can exist in molecular form in water.
- Any stronger acid must dissociate to form $\mathrm{H}_{3} \mathrm{O}^{+}$ and its formal weak conjugate base (which has no real base character).

$$
\begin{array}{ll}
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & \begin{array}{l}
\text { Equilibrium lies right. } \\
\\
\Rightarrow \mathrm{HCl} \text { is leveled }
\end{array} .
\end{array}
$$

$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Equilibrium lies right.
$\Rightarrow \mathrm{HNO}_{3}$ is leveled

Weak Base Equilibria

$$
\begin{gathered}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
K_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{gathered}
$$

- K_{b} is a constant for a particular base in all its solutions.
- The magnitude of K_{b} indicates base strength.
\checkmark Strong bases have $K_{b} \gg 1$.
\checkmark Weak bases have $K_{b}<1$.
\checkmark The more negative the exponent power of ten, the weaker the base is and the less tendency it has to hydrolyze.

Leveling of Strong Bases

When any very strong base ($K_{b} \gg 1$) is added to water, its strength is said to be leveled to that of OH^{-}.

- The hydroxide ion, OH^{-}, is the strongest base that can exist in its molecular form in water.
- Any stronger base will be leveled through hydrolysis to make OH^{-}and the appropriate conjugate acid (which as no real acid strength).

$$
\begin{array}{cc}
\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{OH}^{-} & \begin{array}{l}
\text { Equilibrium lies right } \\
\\
\Rightarrow \mathrm{O}^{2-} \text { is leveled }
\end{array}
\end{array}
$$

$\mathrm{H}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{OH}^{-}$
Equilibrium lies right $\Rightarrow \mathrm{H}^{-}$is leveled

Ordered List of Acids and Conjugate Bases

\checkmark We can construct a table of acids and their conjugate bases, ordered according to acid strength.

- Stronger acids with larger K_{a} 's at the top.
- Weaker acids with smaller K_{a} 's at the bottom.
\checkmark Numerical values of K_{a} are not listed for the truly strong acids, all of which have $K_{a} \gg 1$.
\checkmark Conjugate base strength runs in the opposite sense of acid strength on the table.
- Weaker conjugate bases at the top right.
- Stronger conjugate bases at the bottom right.

TABLE OF CONJUGATE ACID-BASE PAIRS

Acid	Base	$K_{a}\left(25^{\circ} \mathrm{C}\right)$
HClO_{4}	ClO_{4}^{-}	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	
HCl	Cl^{-}	
HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1.0
$\mathrm{H}_{2} \mathrm{CrO}_{4}$	HCrO_{4}^{-}	1.8×10^{-1}
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid)	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.90×10^{-2}
$\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]=\mathrm{SO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HSO}_{3}{ }^{-}$	1.71×10^{-2}
HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{2-}$	1.20×10^{-2}
$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.52×10^{-3}
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}{ }^{3+}$	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	1.84×10^{-3}
$\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ (o-phthalic acid)	$\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}$	1.30×10^{-3}
$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}($ tartaric acid)	$\mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{-}$	1.04×10^{-3}
$\mathrm{HF}_{2}{ }^{\text {a }}$	$\mathrm{F}^{-}{ }^{-1}$	6.8×10^{-4}
$\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	2.6×10^{-4}
$\mathrm{HCO}_{2} \mathrm{H}$ (formic acid)	$\mathrm{HCO}_{2}{ }^{-}$	1.8×10^{-4}
$\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	$\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	1.6×10^{-4},
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ (benzoic acid)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}$	6.46×10^{-5}
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(hydrogen oxalate)	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	6.40×10^{-5}
$\mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}^{-}$(hydrogen tartrate)	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}$	4.55×10^{-5}
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (acetic acid)	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	1.76×10^{-5}
$\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$	$\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}^{+}$	$\sim 1 \times 10^{-5}$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{\text {+ }}$	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	7.9×10^{-6}
$\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{-}$(hydrogen phthalate)	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-}$	3.1×10^{-6}
$\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	8.32×10^{-7}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{HCO}_{3}{ }^{-}$	4.3×10^{-7}
HCrO_{4}^{-}	$\mathrm{CrO}_{4}{ }^{2-}$	3.20×10^{-7}
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	1.6×10^{-7}
$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	1.2×10^{-7}
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$	6.23×10^{-8}
HSO_{3}^{-}	$\mathrm{SO}_{3}{ }^{2-}$	6.2×10^{-8}
HOCl	OCl^{-}	3.0×10^{-8}
$\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	1.5×10^{-8}
HOBr	OBr^{-}	2.06×10^{-9}
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	1.3×10^{-9}
$\mathrm{H}_{3} \mathrm{BO}_{3}$ or $\mathrm{B}(\mathrm{OH})_{3}$	$\mathrm{B}(\mathrm{OH})_{4}^{-}$	7.3×10^{-10}
NH_{4}^{+}	NH_{3}	5.65×10^{-10}
$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$	$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}^{+}$	2.5×10^{-10}
$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{-2}$	5.61×10^{-11}
$\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	2.5×10^{-11}
HOI	OI^{-}	2.3×10^{-11}
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	$\sim 1 \times 10^{-11}$
$\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	$\sim 6 \times 10^{-12}$
$\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	$\sim 4 \times 10^{-12}$
$\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{+}$	$\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{OH}(s)$	$\sim 7 \times 10^{-13}$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(\mathrm{~s})$	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}^{-}$	$\sim 4 \times 10^{-13}$
HPO_{4}^{2-}	$\mathrm{PO}_{4}{ }^{3-}$	3.6×10^{-13}
$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	3.2×10^{-13}
$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}(\mathrm{~s})$	$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}{ }^{-}$	(?)
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	1.0×10^{-14}
HS^{-}	S^{2-}	$\sim 1 \times 10^{-19}$

Polyprotic Acids

\checkmark Each hydrolysis step of a polyprotic acid has a separate K_{a}.
$\boldsymbol{\checkmark}$ Successive dissociations of polyprotic acids lie progressively less to the right, so K_{a} 's become smaller at each step.

Oxalic Acid:
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \quad K_{a}=K_{1}=5.90 \times 10^{-2}$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \quad K_{a}=K_{2}=6.40 \times 10^{-5}$
Sulfuric Acid:
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} \quad K_{a}=K_{1} \gg 1$
$\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-} \quad K_{a}=K_{2}=1.20 \times 10^{-2}$
Sulfuric acid is a strong acid (leveled) only in its first-step hydrolysis.

Hydrated Cations as Acids

\checkmark Hydrated cations, which have a certain number of $\mathrm{H}_{2} \mathrm{O}$ molecules surrounding them (often 6), may be acidic.
$\boldsymbol{\sim}$ Hydrolysis follows the general pattern of a weak acid equilibrium:

$$
\begin{aligned}
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+} \\
K_{a}=7.9 \times 10^{-6}
\end{aligned}
$$

\checkmark Cations with high charge density, such as Al^{3+} and the transition metal cations, are capable of being acidic.
\checkmark Cations with low charge density, such as alkali metal and heavier alkaline earth metal cations, show no appreciable acidity.

- The lightest alkaline earth cations in water, $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ and $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$, are extremely weak acids, as their very small K_{a} values indicate.

Conjugate Base \boldsymbol{K}_{b} 's

$$
\begin{gathered}
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-} \\
K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
\end{gathered}
$$

$\boldsymbol{\checkmark} K_{b}$'s for all the conjugates do not need to be listed, because they can be calculated from the K_{a} 's of their conjugate acids.
$\boldsymbol{\checkmark} K_{b}$'s for conjugate bases become smaller as K_{a}^{\prime} 's of their conjugate acids become larger.

Relationship Between K_{a} of an Acid HA and K_{b} of Its Conjugate Base \mathbf{A}^{-}

$$
\begin{array}{ll}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} & K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-} & K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
\end{array}
$$

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
K_{a} \times K_{b}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

$$
=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}
$$

Relationship Between K_{a} and K_{b} for a Conjugate Pair

For an acid HA and its conjugate base A^{-}, or a base B and its conjugate acid BH^{+}, the relationship between the hydrolysis constants for the conjugate pair is given by

$$
\begin{aligned}
K_{a}^{\mathrm{HA}} K_{b}^{\mathrm{A}^{-}} & =K_{w} \\
K_{b}^{\mathrm{B}} K_{a}^{\mathrm{BH}^{+}} & =K_{w}
\end{aligned}
$$

When are conjugate bases real bases?

$\boldsymbol{\sim}$ Conjugate bases of weak acids are true bases.
Example: Acetate ion, OAc^{-}, the conjugate base of acetic acid, HOAc.

$$
\begin{aligned}
\mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons & \mathrm{HOAc}+\mathrm{OH}^{-} \\
& K_{b}\left(\mathrm{OAc}^{-}\right)=K_{w} / K_{a}(\mathrm{HOAc})=5.68 \times 10^{-10}
\end{aligned}
$$

A solution of sodium acetate, NaOAc , will be basic.

$$
\begin{array}{rl}
\mathrm{NaOAc} \rightarrow \mathrm{Na}^{+}+ & \mathrm{OAc}^{-} \\
\mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O} & \mathrm{HOAc}+\mathrm{OH}^{-}
\end{array}
$$

When are conjugate bases not basic?

\checkmark Aprotic (no ionizable H^{+}) anions of strong acids are not basic, except in a formal sense.

Example: Chloride ion, Cl^{-}, the conjugate base of hydrochloric acid, HCl .

$$
\begin{aligned}
& \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCl}+\mathrm{OH}^{-} \\
& \quad \text { Equilibrium lies completely left! } \\
& K_{b}\left(\mathrm{Cl}^{-}\right)=K_{w} / K_{a}(\mathrm{HCl})=1 \times 10^{-14} /(\gg 1)=\ll 1 \times 10^{-14}
\end{aligned}
$$

A solution of NaCl will be neutral.

$$
\mathrm{NaCl}>\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

$$
\mathrm{pH}=7
$$

Polyprotic Conjugate Bases

\checkmark Aprotic conjugate bases of polyprotic acids can function as polyprotic bases, whose K_{b} values can be calculated from the K_{a} values of their conjugate acids.

$$
\begin{gathered}
\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \\
K_{b}=K_{w} / K_{a}\left(\mathrm{HCO}_{3}^{-}\right)=1.0 \times 10^{-14} / 4.8 \times 10^{-11}=2.1 \times 10^{-4}
\end{gathered}
$$

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\mathrm{OH}^{-}
$$

$$
K_{b}=K_{w} / K_{a}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=1.0 \times 10^{-14} / 4.2 \times 10^{-7}=2.4 \times 10^{-8}
$$

$\boldsymbol{\sim} K_{b}$ values become progressively smaller with successive hydrolyses.

Tabulated $\boldsymbol{K}_{\boldsymbol{b}}$ Values

$\boldsymbol{\checkmark} K_{b}$ values for neutral weak bases are frequently given in tables.

Base	NH_{3}	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
K_{b}	1.8×10^{-5}	4.4×10^{-4}	6.4×10^{-4}	6.4×10^{-5}

$\checkmark K_{a}$ values for conjugate acids can be calculated from K_{a} $\times K_{b}=K_{w}$.
\checkmark Sometimes conjugate acids and their $K_{a}{ }^{\prime}$ s appear in acid tables, from which K_{b} 's for the neutral bases can be calculated, using $K_{a} \times K_{b}=K_{w}$.

$\mathrm{p} K_{a}$ and $\mathrm{p} K_{b}$

$\boldsymbol{\checkmark} K_{a}$ and K_{b} values are often listed as their negative base10 logarithms.

$$
\begin{array}{r}
\mathrm{p} K_{a}=-\log K_{a} \\
\mathrm{p} K_{b}=-\log \mathrm{p} K_{b}
\end{array}
$$

\checkmark The larger the positive value of $\mathrm{p} K$, the smaller the value of K is.
$\boldsymbol{\checkmark}$ Strong acids and bases have negative values of $\mathrm{p} K_{a}$ and $\mathrm{p} K_{b}$, respectively.

