Acid Strength and Structure

Te The tendency of an acid to lose a proton to solvent water, as indicated by its K_{a} value, depends upon two principal factors:

1. The strength of the $\mathrm{H}-\mathrm{A}$ bond.
\checkmark The weaker the bond, the greater is the tendency to lose protons, and the larger K_{a} will be.
2. The stability of the conjugate base in solution.
\checkmark The more stable the conjugate base A^{-}, the greater is the tendency to lose protons, and the larger K_{a} will be.

Binary Acid Strengths

Acid strengths of binary acids, $\mathrm{H}_{n} \mathrm{X}$, increase as the $\mathrm{H}-\mathrm{X}$ bond weakens. This results in the following trends:

1. The larger the X atom, the weaker the $\mathrm{H}-\mathrm{X}$ bond is and the stronger the acid is.

$$
\begin{aligned}
& \mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI} \\
& \mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}
\end{aligned}
$$

2. Among acids with similar $\mathrm{H}-\mathrm{X}$ bond strengths, the more electronegative the X atom, the more polar the $\mathrm{H}-\mathrm{X}$ bond will be.
\checkmark This makes the H atom more positive, facilitating its removal by solvent water.
\checkmark Thus, across a period,

$$
\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}
$$

Oxoacids, HOXO_{n}

1. Among acids of the same structure type, acid strength increases with the electronegativity of the central X atom.

$$
\begin{gathered}
\mathrm{HOI}<\mathrm{HOBr}<\mathrm{HOCl} \\
\mathrm{H}_{2} \mathrm{SeO}_{4}<\mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

\checkmark The acidic H atom is always part of an -OH group.
\checkmark As electronegativity of X increases, the polarity of the $-\mathrm{O}-\mathrm{H}$ bond increases, making removal of H^{+}by solvent water more favorable.

Oxoacids, HOXO_{n}

2. Acidity increases as the number of terminal (or nonhydroxy) oxygen atoms attached to X increases.

$$
\mathrm{HOCl}<\mathrm{HOClO}<\mathrm{HOClO}_{2}<\mathrm{HOClO}_{3}
$$

$K_{a}=3.2 \times 10^{-8}$

$K_{a} \gg 1$

$K_{a}=1.1 \times 10^{-2}$

$K_{a} \gg 1$
\checkmark The electron withdrawing ability of the terminal -O atoms increases the formal charge on the central X atom, decreasing electron density in the $-\mathrm{O}-\mathrm{H}$ bond, thereby weakening it. This is an example of an inductive effect.

Oxoacids, HOXO_{n}

The number of terminal (non-hydroxy) oxygen atoms in the oxoacids bears a strong correlation to K_{a}.

-O atoms	K_{a} range	Strength
0	$10^{-7}-10^{-10}$	very weak
1	$10^{-1}-10^{-4}$	weak
2	$>10^{-1}$	strong
3	$\gg 1$	very strong

Oxoacids, HOXO_{n}

Some care must be used in predicting acid strengths from formulas, because the actual structure may not be apparent.
\checkmark For example, $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$, and $\mathrm{H}_{3} \mathrm{PO}_{2}$ all have only one terminal -O in their structures and therefore have similar strengths.

$K_{a}=7.6 \times 10^{-3}$
$K_{a}=1.6 \times 10^{-2}$
$K_{a}=1 \times 10^{-2}$

Carboxylic Acids, $\mathrm{RCO}_{2} \mathbf{H}$

Carboxylic acids, an important class of organic acids, contain the carboxyl group, $-\mathrm{CO}_{2} \mathrm{H}$.

$\mathrm{HCO}_{2} \mathrm{H}$

formic acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ propionic acid
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
benzoic acid
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
acetic acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
butyric acid
$\mathrm{HO}_{2} \mathrm{CCO}_{2} \mathrm{H}$
oxalic acid
(diprotic)

Acidity of the Carboxyl Group

- The acidity of the carboxyl group is partly due to the electronegativity of the double-bonded oxygen, which withdraws electron density from the $-\mathrm{O}-\mathrm{H}$ bond, thereby facilitating the loss of H^{+}to solvent water.

When a carboxyl group loses H^{+}, it forms a resonance stabilized anion, called a carboxylate ion:

Enhancing Carboxylic Acid Strength

The acidity of a carboxylic acid can be enhanced by adding electronegative atoms to the rest of the molecule.
\checkmark The electron-withdrawing ability of electronegative atoms weakens the $-\mathrm{O}-\mathrm{H}$ bond (inductive effect), thereby enhancing the ability of solvent water to remove H^{+}.

Acid	K_{a}
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.77×10^{-5}
$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	2.05×10^{-3}
$\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.40×10^{-3}
$\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$	3.32×10^{-2}
$\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$	2×10^{-1}
$\mathrm{~F}_{3} \mathrm{CCO}_{2} \mathrm{H}$	5×10^{-1}

Hydrated Cations

The total hydration sphere is the total number of water molecules associated with an ion in solution.
\checkmark The number of water molecules in the total hydration sphere is determined by the charge density of the ion.

Crystallographic and Hydrated Radii of Alkali Metal Ions

Ion	Crystal radii, \AA	Approx. hydrated radii, \AA	Approx. Hydration Number
Li^{+}	0.60	3.40	25
Na^{+}	0.95	2.76	17
$\mathrm{~K}^{+}$	1.33	2.32	11
Rb^{+}	1.48	2.28	10
Cs^{+}	1.69	2.28	10

First Hydration Sphere

The first hydration sphere is defined as the number of water molecules in direct contact with the ion.
\checkmark The number of water molecules in the first hydration sphere depends only on the size of the ion.
\checkmark Typical cations have first hydration spheres with four to six water molecules; e.g.,

$$
\begin{gathered}
\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+} \quad \mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+} \quad \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} \\
\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} \quad \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}
\end{gathered}
$$

Acidic Hydrated Cations

Ion-dipole attractions have an inductive effect on the $\mathrm{O}-\mathrm{H}$ bonds of the water molecules in the first hydration sphere, which weakens the bond and may allow H^{+}to be lost to solvent water.

water of hydration

$$
\begin{array}{ll}
\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}^{+}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a}=\sim 1 \times 10^{-5} \\
\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a}=1.6 \times 10^{-4}
\end{array}
$$

\checkmark This means that when we dissolve an ionic compound in water, the cation may affect the acid-base character of the solution.

Acidic and Non-Acidic Hydrated Cations

As the charge density experienced by water molecules in the first hydration sphere increases the acidity increases.
\checkmark Smaller and more highly charged cations tend to be acidic.
\checkmark The alkali and alkaline earth cations (with the exceptions of Be^{2+} and Mg^{2+}) are too large and too lowly charged to have any appreciable acidity.
\checkmark Transition metal cations tend to be more acidic than nontransition metal ions of comparable charge and size, because the poorer shielding d-subshell allows more of the nuclear charge to be experienced by the attached water molecules; i.e., they have higher effective nuclear charges, Z^{*}.

Hydrated Cations as Polyprotic Acids

Hydrated cations with appreciable acidity often act as polyprotic acids.
\checkmark Hydrated Al^{3+} can act as a tetraprotic acid:
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}{ }^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(s)+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(s)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
\checkmark The addition of a strong base, such as OH^{-}, is necessary to drive the equilibria to the right by removal of the $\mathrm{H}_{3} \mathrm{O}^{+}$by neutralization.

Lewis Acid-Base Theory
 G. N. Lewis

Lewis acid - an electron-pair acceptor
Lewis base - an electron-pair donor
\checkmark Lewis acids are "seeking" an electron-pair, and so are called electrophiles.
\checkmark Lewis bases are "seeking" a nucleus to give an electronpair, and so are called nucleophiles.
(Gk. philos, beloved, dear)
\checkmark The product of a Lewis acid-base reaction is often called an adduct.

Comparison of Theories

\checkmark Acids and bases in Arrhenius and Brønsted-Lowry theories are also acids and bases in Lewis theory: hydronium ion ammonia water ammonium ion

$\begin{array}{ll}e \text {-pair acceptor } & e \text {-pair donor } \\ =\text { acid }=\text { electrophile } & =\text { base }=\text { nucleophile }\end{array}$
\checkmark Some acid-base reactions in Lewis theory are not seen as such by the other theories:

$$
\begin{aligned}
& : \mathrm{NH}_{3} \\
& \text { base }
\end{aligned}+\begin{aligned}
& \mathrm{BF}_{3} \\
& \text { acid }
\end{aligned} \rightarrow \quad \begin{gathered}
\mathrm{H}_{3} \mathrm{~N}: \mathrm{BF}_{3} \\
\text { adduct }
\end{gathered}
$$

Examples of Lewis Acid-Base Reactions

$$
\begin{aligned}
& \mathrm{Co}^{3+}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \\
& \text { acid base adduct } \\
& \mathrm{SbF}_{5}+\mathrm{F}^{-} \rightarrow\left[\mathrm{SbF}_{6}\right]^{-} \\
& \text {acid base adduct } \\
& \mathrm{CO}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{HCO}_{3}^{-} \\
& \text {base adduct }
\end{aligned}
$$

