Common Ion Effect
 Acid + Conjugate Base

For moderately concentrated solutions of a weak acid, HA, and significant added amounts of its conjugate base, A^{-}:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

$$
\begin{gathered}
{[\mathrm{HA}] \approx C_{\mathrm{HA}} \quad\left[\mathrm{~A}^{-}\right] \approx C_{\mathrm{A}^{-}}} \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \approx \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] C_{\mathrm{A}^{-}}}{C_{\mathrm{HA}}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx K_{a} \times\left(\frac{C_{\mathrm{HA}}}{C_{\mathrm{A}^{-}}}\right)}
\end{gathered}
$$

Common Ion Effect
 Base + Conjugate Acid

For moderately concentrated solutions of a weak base, B, and significant added amounts of its conjugate acid, BH^{+}:

$$
\begin{gathered}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{BH}^{+} \\
{[\mathrm{B}] \approx C_{\mathrm{B}} \quad\left[\mathrm{BH}^{+}\right] \approx C_{\mathrm{BH}^{+}}} \\
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]} \approx \frac{\left[\mathrm{OH}^{-}\right] C_{\mathrm{BH}^{+}}}{C_{\mathrm{B}}} \\
{\left[\mathrm{OH}^{-}\right] \approx K_{b} \times\left(\frac{C_{\mathrm{B}}}{C_{\mathrm{BH}^{+}}}\right)}
\end{gathered}
$$

Henderson-Hasselbalch Equations

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{a}+\log \left(\frac{C_{\mathrm{A}^{-}}}{C_{\mathrm{HA}}}\right) \\
\mathrm{pOH} & =\mathrm{p} K_{b}+\log \left(\frac{C_{\mathrm{BH}^{+}}}{C_{\mathrm{B}}}\right)
\end{aligned}
$$

Volume Is Irrelevant

For a solution of an acid to which significant amounts of its conjugate base have been added so that both have moderate concentrations ($\gg 10^{-5} \mathrm{M}$), the volume of the solution does not affect the pH .

If V is the volume of a solution made by adding significant amounts of both HA and A^{-}:

$$
C_{\mathrm{HA}}=\operatorname{mol~HA} / \mathrm{V} \quad C_{\mathrm{A}^{-}}=\operatorname{mol~A} / \mathrm{V}
$$

Substituting into K_{a} :

$$
\begin{gathered}
K_{a} \approx \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left(\frac{\mathrm{mol} \mathrm{~A}^{-}}{\mathrm{V}}\right)}{\frac{\mathrm{mol} \mathrm{HA}}{\mathrm{~V}}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left(\mathrm{mol} \mathrm{~A}^{-}\right)}{\mathrm{mol} \mathrm{HA}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx K_{a} \times\left(\frac{\mathrm{mol} \mathrm{HA}}{\mathrm{~mol} \mathrm{~A}^{-}}\right)}
\end{gathered}
$$

Te This is also true for a solution of a base to which significant amounts of its conjugate acid have been added so that both have moderate concentrations $\left(\gg 10^{-5} \mathrm{M}\right)$.

Equimolar Solutions of a Conjugate Pair

If $C_{\mathrm{HA}}=C_{\mathrm{A}^{-}}$, then

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] C_{\mathrm{A}^{-}}}{C_{\mathrm{HA}}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

And

$$
\mathrm{pH}=\mathrm{p} K_{a}
$$

Likewise, if $C_{\mathrm{B}}=C_{\mathrm{BH}^{+}}$, then

$$
K_{b}=\frac{\left[\mathrm{OH}^{-}\right] C_{\mathrm{BH}^{+}}}{C_{\mathrm{B}}}=\left[\mathrm{OH}^{-}\right]
$$

And

$$
\mathrm{pOH}=\mathrm{p} K_{b}
$$

Buffer Solutions

A buffer solution is an equilibrium mixture of a weak acid and its conjugate base, or a weak base and its conjugate acid, with both members of the conjugate pair present in moderate concentrations.

The essential properties of a buffer solution are:

1. pH does not change with moderate dilution.
2. pH does not change significantly with small additions of acid or base.

The Ideal Buffer

(1) Make

$$
[\mathrm{HA}]=\left[\mathrm{A}^{-}\right] \text {or }[\mathrm{B}]=\left[\mathrm{BH}^{+}\right] .
$$

Then,

$$
\mathrm{pH}=\mathrm{p} K_{a} \text { and } \mathrm{pOH}=\mathrm{p} K_{b}
$$

\checkmark Response will be equally good to added $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}.
(2) Make concentrations high.
\checkmark Then, the ratio $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ or $\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$ will not change significantly with small added amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}.

Nearly Ideal Buffer

\checkmark To make a buffer with a desired pH :
(1) Try to choose a conjugate pair whose $\mathrm{p} K_{a} \approx \mathrm{pH}$.
(2) Adjust the ratio $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ or $\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$ to achieve the desired pH .
(3) The practical limit on the choice of conjugate acid-base pair is

$$
\mathrm{pH} \approx \mathrm{p} K_{a} \pm 1
$$

Otherwise, one member of the pair is present in too small an amount to make an effective buffer.

