Titration

Titration is the addition of a standard solution (the titrant) to a measured volume of a solution with unknown concentration (the analyte) to react according to a known stoichiometry.
n [Titrant $]+m$ [Analyte] \rightarrow products

Analyte in reaction flask
known volume, unknown concentration

Titration Basic Concepts and Definitions

$$
n[\text { Titrant }]+m \text { [Analyte }] \rightarrow \text { products }
$$

\checkmark At any point in the titration, if volume is in mL , millimol titrant added $=\mathrm{M}_{\mathrm{t}} \times V_{\mathrm{t}}$
\checkmark Equivalence point - Volume of titrant necessary to achieve complete conversion of analyte into products.

At the equivalence point, millimoles of analyte initially present is related to millimoles of titrant added by

$$
\mathrm{M}_{\mathrm{a}} \times V_{\mathrm{a}}=(m / n) \times \mathrm{M}_{\mathrm{t}} \times V_{\mathrm{t}}
$$

\checkmark End point - Volume of titrant added when an indicator changes color, ideally signaling the equivalence point.

Types of Acid-Base Titrations

Analyte	Titrant
Weak or strong base	Strong acid (e.g., HCl)
Weak or strong acid	Strong base (e.g., NaOH)

Examples:
strong acid - strong base (acid or base analyte; base or acid titrant)

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Weak acid (analyte) - strong base (titrant)

$$
\mathrm{HOAc}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaOAc}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Weak base (analyte) - strong acid (titrant)

$$
\mathrm{NH}_{3}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(a q)
$$

Weak triprotic acid (analyte) - strong base (titrant)

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+3 \mathrm{H}_{3} \mathrm{O}(l)
$$

Acid-Base Titrations

Net Ionic Equations by Type

$$
\begin{gathered}
\text { Strong Acid-Strong Base } \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Weak Acid-Strong Base $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$

Weak Base-Strong Acid $\mathrm{B}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O}$

Acid-Base Titration Relationships at Equivalence Point (Monoprotic Cases)

initial millimoles analyte $=$ millimoles titrant added

$$
V_{a} \mathrm{M}_{a}=V_{b} \mathrm{M}_{b}
$$

Strong Acid-Strong Base

initial millimoles $\mathrm{H}_{3} \mathrm{O}^{+}=$millimoles OH^{-}added or
initial millimoles $\mathrm{OH}^{-}=$millimoles $\mathrm{H}_{3} \mathrm{O}^{+}$added

Weak Acid-Strong Base

 initial millimoles $\mathrm{HA}=$ millimoles OH^{-}added Weak Base-Strong Acid initial millimoles $\mathrm{B}=$ millimoles $\mathrm{H}_{3} \mathrm{O}^{+}$added

Regions in a Weak Acid Titration

1. Initial Point (no added titrant):
$\checkmark \quad$ Pure HA in water
Use K_{a} and C_{HA} to find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH .
2. Before Equivalence Point (buffer region):
$\checkmark \quad$ Significant [HA] and [A ${ }^{-}$]
Use K_{a} or Henderson-Hasselbalch equation to find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH , just like a buffer.
3. Equivalence Point:
$\checkmark \quad$ All HA converted to A^{-}
Calculate K_{b} for A^{-}as $K_{w} / K_{a}^{\mathrm{HA}}$.
Find $\left[\mathrm{OH}^{-}\right]$and pOH as for a solution of pure A^{-}in water, then pH .
4. Beyond Equivalence Point:
\checkmark Excess OH^{-}
Calculate $\left[\mathrm{OH}^{-}\right]$and pOH , then pH , as in the strong acid-base case.

Titration of $\mathbf{2 5 . 0 0} \mathrm{mL}$ of $\mathbf{0 . 1 0 0}$ M HA with 0.0500 M NaOH - Effect of pKa

Titration of $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of $\mathbf{0 . 1 0 0 ~ M ~ B ~}$ ($\mathrm{pKb}=5.00$) with 0.0500 M HCl

pH at the Equivalence Point

\checkmark Strong acid - strong base titration:

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
\mathrm{pH}=7
\end{gathered}
$$

\checkmark Weak acid - strong base titration:

$$
\begin{gathered}
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-} \\
\mathrm{pH}>7
\end{gathered}
$$

\checkmark Weak base - strong acid titration:

$$
\begin{gathered}
\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{pH}<7
\end{gathered}
$$

Summary of Calculations for Weak Acid Titrations Before Equivalence Point

Region	Calculation of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Initial (no added titrant)	$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HA}]}$
	$=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{C_{\mathrm{HA}}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
	Often, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{a} C_{\mathrm{HA}}}$
	$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] C_{\mathrm{A}^{-}}}{C_{\mathrm{HA}}}$
Before Equivalence Point (Buffer Region)	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a} \times\left(\frac{\mathrm{mmol} \mathrm{HA}}{\mathrm{mmol} \mathrm{A}}\right)$
	$\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$
	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a}$
	$\mathrm{pH}=\mathrm{p} K_{a}$
Half Titration Point	

Summary of Calculations for Weak Acid Titrations Equivalence Point and Beyond

Region	Calculation of $\left[\mathrm{OH}^{-}\right]$
Equivalence Point	$K_{b}^{\mathrm{A}^{-}}=\frac{K_{\mathrm{w}}}{K_{a}^{\mathrm{HA}}}$
	$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b}^{\mathrm{A}^{-}} C_{\mathrm{A}^{-}}}$
After Equivalence Point	$\left.\mathrm{OH}^{-}\right]=\left(\frac{\text { mmol excess } \mathrm{OH}^{-}}{\text {total volume }}\right)$

Summary of Calculations for Weak Base Titrations Before Equivalence Point

Region	Calculation of [OH^{-}]
Initial (no added titrant)	$\begin{gathered} K_{b}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{[\mathrm{~B}]} \\ =\frac{\left[\mathrm{OH}^{-}\right]^{2}}{C_{\mathrm{B}}-\left[\mathrm{OH}^{-}\right]} \\ \text {Often, }\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C_{\mathrm{B}}} \end{gathered}$
Before Equivalence Point (Buffer Region)	$\begin{gathered} K_{b}=\frac{\left[\mathrm{OH}^{-}\right] C_{\mathrm{BH}^{+}}}{C_{\mathrm{B}}} \\ {\left[\mathrm{OH}^{-}\right]=K_{b} \times\left(\frac{\mathrm{mmol} \mathrm{~B}^{\mathrm{mmol} \mathrm{BH}^{+}}}{)}\right.} \end{gathered}$
Half Titration Point	$\begin{aligned} & {\left[\mathrm{BH}^{+}\right]=[\mathrm{B}]} \\ & {\left[\mathrm{OH}^{-}\right]=K_{b}} \\ & \mathrm{pOH}^{2}=\mathrm{p} K_{b} \end{aligned}$

Summary of Calculations for Weak Base Titrations Equivalence Point and Beyond

Region	Calculation of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Equivalence Point	$K_{a}^{\mathrm{BH}^{+}}=\frac{K_{\mathrm{w}}}{K_{b}^{\mathrm{B}}}$
	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{a}^{\mathrm{BH}^{+} C_{\mathrm{BH}^{+}}}}$
After Equivalence Point	$\left.\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left(\frac{\text { mmol excess H} \mathrm{O}^{+}}{\text {total volume }}\right)$

