coupling constants

JAX > JBX

ocw.umb.edu

More Complex Splitting Patterns

 if H_c is a set of two equivalent H, then the observed splitting is a doublet of triplets

More Complex Splitting Patterns

 a tree diagram for the complex coupling of the three vinylic hydrogens in ethyl propenoate

$$\begin{array}{c}
 & O \\
 & H \\
 & C = C \\
 & H \\
 & C \\
 & H \\
 & D
\end{array}$$

Marietta Schwartz, Ph.D © 2008

ocw.umb.edu

Stereochemistry & Topicity

Enantiotopic groups

Substitution produces a stereocenter; therefore, hydrogens are enantiotopic. Both hydrogens are prochiral; one is pro-R-chiral, the other is pro-S-chiral.

- enantiotopic atoms or groups have identical chemical shifts in achiral environments
- they have different chemical shifts in chiral environments

Marietta Schwartz, Ph.D © 200

Stereochemistry & Topicity

- Diastereotopic groups
 - H atoms on C-3 of 2-butanol are diastereotopic
 - substitution by deuterium creates a chiral center
 - because there is already a chiral center in the molecule, diastereomers are now possible

diastereotopic hydrogens have different chemical shifts under all conditions

Stereochemistry and Topicity

- ◆ ¹H-NMR spectrum of 3-methyl-2-butanol
 - the methyl groups on carbon 3 are diastereotopic and appear as two doublets

¹³C NMR Spectroscopy

The principles of ¹³C NMR are the same as those of ¹H NMR, in that we have a nucleus with spin ½, we place the sample in an external magnetic field to create a separation of the two possible spin states, and we scan through the appropriate radiofrequencies to detect the different types of nuclei.

Marietta Schwartz, Ph.D © 2008

Differences:

- $1.\,^{13}$ C has about 1.1% natural abundance. Therefore we need a much more sensitive spectrometer to be able to do 13 C NMR with any degree of accuracy. The development of FT-NMR made this possible.
- 2. Since 13 C has only about 1.1% natural abundance, the chances of a molecule containing two 13 Cs next to each other are slim to none. Therefore, we don't see spin-spin splitting in 13 C NMR. This simplifies the spectrum considerably.
- 3. However, the ¹³Cs can be split by the ¹Hs attached to them this splitting can be removed by using a technique called **broad-band decoupling**. So not a problem.
- 4. Integrals are meaningless in 13 C NMR because of a phenomenon called **relaxation**. We won't discuss relaxation, but will take advantage of the absence of integrals to simplify the interpretation of the 13 C spectra.
- 5. Where the ¹H NMR spectrum has a scale that runs from 0 to about 12 ppm, ¹³C NMR spectra run from 0 to about 200 ppm. Much larger scale. TMS is still used as a reference.

Basics:

We see one peak for each unique carbon. A monosubstituted benzene, for instance, would show four different peaks.

Chemical shift is the important thing here. (See the table on p. 394.)

Alkyls (sp ³)	\dots 0-50, generally.
Alkyl halide or amine	10-65
C next to an oxygen (alcohol or ether)	50-90
Alkyne (sp)	60-90
Alkene (sp ²)	
Aromatic	100-170
(note: benzene itself comes at 128.5 ppm)	
Nitriles (the C of the CN)	120-130
(note, very different from alkynes unlike IR)	
Amide carbonyl	150-180
Carboxylic acid or ester carbonyl	
Aldehyde or ketone carbonyl	182-215
(note the large difference in different carbonyls)	