Water and Water Pollution

I.) Water Properties

A.) Distribution

97% ocean

2% Ice on continents

0.5% Groundwater

0.003% Lakes, Rivers, Atmosphere

B.) Phases

3 phases present on earth

C.) Density

Ice less than liquid water

Hydrogen Bonding

D.) Solvent Properties

Everything dissolves in water

E.) Large Heat Capacity

II.) Hydrological Cycle

A.) Surface water

Watershed, precipitation, runoff

B.) Evaporation

60-80% of irrigation

C.) Groundwater

Recharge area

Water Table

Artesian Wells

Moves 1 m/yr

D.) Ocean→Glaciation

III.) Distribution

A.) Uneven—excess withdrawal in some places, urbanization

0.024% available to humans

B.) Methods to increase supply

Transport (LA Aquadect)

Damns (Colorado River, Columbia River)

Groundwater (US withdrawals 4 times replacement rates)

Desalination—Expensive (San Diego is doing it)

Increase efficiciency

50% waste in US could be 15%

Lawns are 80% of use

Better irrigation systems

Gray water systems

Cisterns

C.) Too much water

Deforestation leads to flooding

D.) Contamination of groundwater supplies

IV.) Pollutants

- A.) Pathogens—cause disease—coliforms
- B.) Low oxygen (BOD used in 5 days at 20C) Little can live below 4 ppm (Mississippi River)
- C.) Inorganics—toxic metals
- D.) Nutrients—Nitrate, Phosphate
- E.) Organic chemicals—oil, PCBs, detergents,
- F.) Radioactive substances
- G.) Thermal pollution
- H.) Genetic pollution—exotic species

V.) Problems

- A.) Oxygen sags in streams—changes species downstream of effluent
- B.) eutrophication—excess nutrients increase algae, fast growing, choke out clear, slow growing and benthic species.
 - C.) Biomagnification—in long food chains, POPs concentrate in fats
 - D.) Acid Rain—acid resistant species preferred, indicator fish die
 - E.) Oil Spills
 - F.) non-point source pollution