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Assignment

REQUIRED READING

° Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its

O

O

applications, 4" edition. Prentice Hall, Upper Saddle River, NJ. 920 pp.
Read Sections 3.1-3.6[part] 3.9 (p. 128-183, 193-199), 3.9 (p 226-236, has
important implications for propagation of error)

Skim or skip entirely 3.7-3.8, 3.10-3.13
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Understanding by Design Templates

Understanding By Design Stage 1 — Desired Results Week 3
LM Chapter 3 Random Variables

G Established Goals

. Apply the binomial and hypergeometric probability distribution functions (pdf’s) and
their cumulative distribution functions (cdf’s) to environmental problems

. (MCAS 10" Grade standard 10.D.1) Select, create, and interpret an appropriate

graphical representation (e.g., scatterplot, table, stem-and-leaf plots, box-and-whisker
plots, circle graph, line graph, and line plot) for a set of data and use appropriate
statistics (e.g., mean, median, range, and mode) to communicate information about
the data. Use these notions to compare different sets of data.

U Understand

. Integral calculus is the language used to describe continuous probability functions
(e.g., the cdf is the integral of the pdf)

. Casino games, based on well-defined pdfs, are predictable, but many real-life events

like Wall Street crashes and climate change disasters follow poorly described or
unknown pdfs. Modeling some real life processes like casino games is an example of
Taleb’s ludic fallacy http://en.wikipedia.org/wiki/Ludic_fallacy

. Models of population genetics, natural selection, and biodiversity are based on pdfs.

. Monte Carlo simulations are used not only to simulate analytical probabilities (LM
Chapter 2) but also to generate pdfs for Bayesian inference.

Q Essential Questions

. Can you do statistics without understanding probability?

. What is the best bet on the Casino craps table?

. How can you estimate the number of species in a random draw of 100 individuals
from a community?

. How can the US average income increase while the median income stays the same?

K Students will know how to define (in words or equations)

. Bernoulli trial, binomial & hypergeometric distributions, boxplot [not in text, but

will be covered below], cumulative distribution function, discrete random variable,
expected value, mean, median, probability density function, probability function
(discrete [Def. 3.3.1] & continuous), standard deviation, variance

S Students will be able to

. Write Matlab programs to solve applied problems involving the binomial &
hypergeometric distributions

. Compute the odds for craps

. Interpret and apply the Sanders-Hurlbert rarefaction equation for estimating species
diversity

. Explain why Sewall Wright’s genetic drift and the potential extinction of the Norther

Right Whale is a consequence of the binomial probability distribution function.



http://en.wikipedia.org/wiki/Ludic_fallacy
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Understanding by Design Stage 2 — Assessment Evidence Week 3 6/14-6/20
LM Chapter 3 Random Variables. Read 3.1-3.6 (Pp 128-198), 3.9 (Pp 226-236). Skip or skim

3.7-3.8 3.10-3.1
. Post in the discussion section by 6/22/11 W
. What is the relationship between Hurlbert’s E(S,) and the hypergeometric

probability distribution function (what are the white balls, red balls, etc.)?
. Problems due Wednesday 6/22/11 W 10 PM

. Each problem must be solved using Matlab
. Basic problems (4 problems 10 points)
. Problem 3.2.2 P. 136 Nuclear power rods
. Use Example 3.2.2 as a model
. Problem 3.2.26 P. 147 Sock matching
. Problem 3.5.2 P 184 Expected value of a Cracker Jack Prize
. Problem 3.6.14 P 199 Variance of a linear function
. Not much of a Matlab problem The answer to 3.6.5 is in the back
of the book,
. Advanced problems (2.5 points each)
. Problem 3.3.6 p. 160 pdf for non-standard dice
. Use Example 3.3.1 as a model
. Problem 3.4.14 page 173
. Master problems (2 only, 5 points each, Choose only 1)
. With fair dice, the probability of the shooter winning in craps is

(244/495=0.493; the house or fader has a 1.42% advantage). What is the
probability of the shooter winning with the crooked dice called ace-six
flats described in Example 3.3.1 (p. 150) and sold at
http://www.gamblingcollectibles.com/equipment.html?

. Write a Matlab program that calculates the probability of the shooter
winning with double-6 dice (the 1 on both dice is replaced with a 6)
. http://www.gamblingcollectibles.com/equipment2.html
Introduction

Chapter 3 — Random Variables — 1is the longest (146 p) and most difficult chapter in Larsen
& Marx (2006). The first six sections introduce concepts that are the foundation for the rest of
the course and that are essential for virtually all statistical analysis. The final 7 sections of
chapter 3 are less important for the course and for future statistical analyses, so I'm
recommending that we skip all but section 3.9. Section 3.9 deals with concepts fundamental to
propagation of error, which is one of the important concepts that students earning graduate
degrees in the sciences must learn. Feel free to read and study this material that we are skipping
We simply don’t have the time to cover everything, and we won’t use these concepts in the latter
part of the course. I’ve programmed many of the case studies for sections 3.7-3.13, so you can
work through these sections on your own.


http://www.gamblingcollectibles.com/equipment.html
http://www.gamblingcollectibles.com/equipment2.html
http:3.7-3.13
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I’m an ecologist and this is the key chapter needed for understanding a variety of biodiversity
indices, especially the Sanders-Hurlbert rarefaction method.

Boxplots

Boxplot Invented by Tukey and displaying an approximate interquartile range, median,
range and extreme data points. A box marks the the interquartile range (IQR) with
lower and upper limits approximately equal to the 1% and 3" quartiles. Tukey didn’t
define the boxes in terms of quartiles, but used the term hinges, to eliminate ambiguity.
Tukey wanted a quick method to graph data and calculating quartiles using cumulative
distribution functions isn’t quick. Tukey found his hinges by first finding the median. He
then found the hinges as the median of the points larger and smaller than the median.
This is NOT how quartiles are defined. There are a number of different ways of defining
the 1** and 3" quartiles, which mark the 25™ and 75" % of the cumulative frequency
distributior
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Figure 1. SPSS boxplots

Whiskers extend to the adjacent values, which are actual data outside the IQR but within 1.5
IQR’s from the median. Points more than 1.5 IQR’s from the IQR are outliers. Points more than
3 IQR’s from the box are extreme outliers. See also
http://mathworld.wolfram.com/Box-and-WhiskerPlot.html


http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
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Annotated outline (with Matlab programs) for Larsen &
Marx Chapter 3

Jakob (Jacques) Bernoulli (1654-1705)
3 Random Variables
3.1 Introduction
3.1.1 Random variables
3.1.1.1 discrete & continuous
3.2 Binomial and Hypergeometric probabilities
3.2.1 The binomial probability distribution

Theorem 3.2.1 Consider a series of n independent trials, each resulting in one of two possible

outcomes, “success” or “failure.” Let p=P(success occurs at any given trial) and assume that p
remains constant from trial to trial. Then

P (k successes) = ( Z) pEQa-pyr* k=0,1,.n

Comment The probability assignment given by the Equation in Theorem 3.2.1 is known as the
binomial distribution.

Example 3.2.1

% LMex030201 4th.m

% Written by E. Gallagher, Eugene.Gallagher@umb.edu

% Dept. of Environmental, Earth & Ocean Sciences

% Revised 10/19/2010

% Reference: Larsen & Marx (2006) Introduction to Mathematical
% Statistics, 4th edition, page 131.

% Your client is guilty of a crime and a blood sample test indicates
% that the defendant's blood matches that at the scene of the crime.
% In one tenth of 1% of cases these tests are in error. If the

% test is sent out to 6 independent labs, what is the probability that
% at least one lab will make a mistake and conclude that your client is
% innocent?

P=1-binopdf(0,6,0.001)

% LMex030202 4th.m

% Larsen & Marx Example 3.2.2 Page 132 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th Edition
% Based on LMEx030306 3rd.m

% see LMEx030202 4th.m, p. 137, 3rd edition

% Written by Eugene.Gallagher@umb.edu

% revised 1/11/2011.

% A drug company is testing drugs on 30 patients. It has a rule rejecting a
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% drug if fewer than 16 of 30 patients show improvement and accepting the
% drug if 16 or more patients show improvement

n=30;

po=0.5;

pa=0.6;

% What is the probability that a drug that is 60% effective will be

% rejected using the decision rule of 16 patients or more have to improve?
PFR=sum(binopdf(0:15,n,pa))

% or equivalently, use the binomial cumulative distribution function
PFR2=binocdf(15,n,pa)

fprintf(...

'Probability of a false rejection=%6.4f | effectiveness = %3.1f.\n’,...
PFR,pa);

% What is the probability that a drug that is 50% effective will be

% accepted for further development using the decision rule of 16 patients
% or more have to improve?

PFA=sum(binopdf(16:30,n,po))

% or equivalently, use the binomial cumulative distribution function
PFA2=1-binocdf(15,n,po)

fprintf(...

'Probability of a false acceptance=%6.4f | effectiveness = %3.1f.\n’,...

PFA po);

Example 3.2.3

% LMex030203 4th

% Probability of winning a series in
4,5, 6 or 7 games

% 1if the probability of winning each
game is 0.5

% Nahin's Dueling idiots also solves
the problem

% Written by E. Gallagher, revised
10/19/10

% Eugene.Gallagher@umb.edu .
% Dept. of Environmental, Earth & ‘ " seresLengt
Ocean Sciences

% Reference: Larsen & Marx (2006)
Introduction to Mathematical

% Statistics, 4th edition, page
133-134.

% Call Matlab's stats toolbox binomial pdf function:

% p4 is the probability of 1 team winning 3 of 3 games * p winning a
% 4th game; the total probability of a series ending is the probabilty
% of the 2nd team winning too, so since p=0.5, just multiply by 2

% p4=binopdf(4,4,0.5)*2 or

p4=binopdf(3,3,0.5)*0.5; p4=2*p4

Number of Series

Figure 2. Observed Stanley Cup Series lengths ( red, left)
with expectations if probability of better team winning is
0.7265 (yellow, middle) or 0.5 ( blue , right).
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pS=binopdf(3,4,0.5)*0.5; pS=2*p5
p6=binopdf(3,5,0.5)*0.5; p6=2*p6
p7=binopdf(3,6,0.5)*0.5; p7=2*p7
% These 4 calculations can be handled in 1 Matlab line
% pdfseries=2*binopdf(3,3:6,0.5)*0.5
pdfseries=binopdf(3,3:6,0.5)
% The observed and theoretical probabilities are shown in Table 3.2.3
SL=[4:7]";
ObservedP=[19/59 15/59 15/59 10/59];
Table030203=[SL ObservedP' pdfseries'];
fprintf('Table 3.2.3\n\n")
fprintf('Series Observed Theoretical\n')
fprintf('Length Proportion Probability\n')
% Note that a loop structure can be avoided by using fprintf with
% a matrix. The fprintf comman reads entries row-wise, hence the transpose
fprintf(" %1.0f  %5.3f %S5.3f\n", Table030203")
fprintf('Series Observed Expected\n')
% Optional produce a bar plot, with each bar of width=1;
Bardata=[ObservedP' pdfseries'];
bar(4:7,Bardata, 1,'grouped’)
% ylim([0 23])
legend('Observed P','Theoretical P (Pwin=0.5)',...
'"Location', NorthEast')
xlabel('Series Length")
ylabel('Proportion of Series')
title('Example 3.2.3");figure(gcf);prnmenu('LM323")
% This next section uses some advance fitting algorithms to fit the model.
% Optional fitting algorithms [Not required at all for EEOS601]
% The observed proportions had more short games, what is the
% series length if the odds of winning differ from 0.5? More short
% games would result if one team had a higher probability of winning.
% This can be solved iteratively by plugging different values into
% equations and visually examining the output. This was done and 0.75
% seemed to provide a good fit.
% Matlab has a suberb set of fitting tools, and fminbnd can be used
% to find the value of pwin that provides the best fit. There are
% several different ways of examining the best fit, one is minimizing
% the sum of squared residuals sum((Observed-Expected).”2). The other,
% more classic approach, is to minimize the chi-square statistic
% Chi square = sum((Observed-Expected).”2./Expected). Both approaches
% will be used with these Stanley cup data.
pwin=0.75;
% Can no longer multiply the prob of one team winning by 2
pdfseries2=binopdf(3,3:6,pwin)*pwin + binopdf(3,3:6,1-pwin)*(1-pwin);
FittedTable030203=[SL ObservedP' pdfseries2'];
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fprintf("\n\n\nFitted Table if pwin=%5.3f\n\n',pwin)
fprintf('Series Observed Theoretical\n')
fprintf('Length Proportion Probability\n')
% Note that a loop structure can be avoided by using fprintf with
% a matrix. The fprintf comman reads entries row-wise, hence the transpose
fprintf(" %1.0f  %5.3f %S5.3f\n',FittedTable030203")
% find the optimum value of pwin using Matlab's bounded search algorithm,
% fminbnd
% First, the minimization of squaredvvresiduals will be used, then
% using chi square stat: sum((O-E).”2./E)
% I'm following the help file here and using an implicit function that
% I'll call f that will take as input the observed proportions and pwin
% and return the sum of the squared residuals
f=@(pwin,ObservedP) ...
sum( ( (binopdf(3,3:6,pwin)* pwin + ...
binopdf(3,3:6,1-pwin)*(1-pwin))-ObservedP).”2);
% Call the function f to find pwin that minimizes the function
% with bounds 0.49 <=p <=1
pwino = fminbnd(@(pwin) f(pwin,ObservedP),0.49,1);
% Note that a search, with 0,1 bounds returned 0.272
% So the bounds should be set to find the p for the best team
% with an allowance for a tie, with 0.49 as lower bound,
% fminbind returns 0.728
% Use this 'best' estimate to find the pdf
pdfseries3=binopdf(3,3:6,pwino)*pwino + binopdf(3,3:6,1-pwino)*(1-pwino);
FittedTable=[SL ObservedP' pdfseries3'];
fprintf("n\n\nFitted Table if pwin=%35.3f\n\n',pwino)
fprintf('Series Observed Theoretical\n')
fprintf('Length Proportion Probability\n')
fprintf(" %1.0f  %5.3f %S5.3f\n'",FittedTable")
% Now fit the problem minimizing the chi square statistic. Divide
% each square residual by the expected value. Observed & Expected values
% should be in the form of counts, so although unimportant, I'll redefine
% the function to use the observed & expected games (multiply by 59)
f cs=@(pwin,ObservedP) ...
sum( ((ObservedP-(binopdf(3,3:6,pwin)* pwin -+ ...
binopdf(3,3:6,1-pwin)*(1-pwin)))*59).72./ ...
(binopdf(3,3:6,pwin)* pwin + .
binopdf(3,3:6,1-pwin)*(1-pwin))*59);
%
pwino_cs = fminbnd(@(pwin) f cs(pwin,ObservedP),0.49,1);
pdfseries3=binopdf(3,3:6,pwino_cs)*pwino_cs + ...
binopdf(3,3:6,1-pwino_cs)*(1-pwino_cs);
Games=59;
CS=sum((Games*(ObservedP-pdfseries3))."2./(Games*pdfseries3));
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% What is the probability of observing such a Chi Square statistic by

% chance? This is covered in Chapter 10 (page 615 in the text).

% The degrees of freedom is equal to 1-the number of cells in

% the data, since if the total number of games played is known

% and the number that ended in less than 7 games is known,

% then the number of series taking 7 games can

% be calculated by difference. Only seriesnumber-1 degrees of freedom

% are present. Also, an addtional degree of freedom is lost for every

% parameter fit

% with the data. In the chi-square fitting routine, I fit the best

% estimate of the winning percentage, or P=0.7265, so another degree

% of freedom is lost

df=4-1-1;

P = 1- chi2cdf(CS,df);

FittedTable=[SL Games*ObservedP' Games*pdfseries3'];

fprintf(...
"n\n\n Pwin=%6.4f, Chi Square=%>5.2f, df=%1.0f, P=%4.2f\n\n’,...
pwino_cs, CS,df, P)

fprintf('Series Observed Expected\n')

fprintf('Length Games ~ Games\n')

% Note that a loop structure can be avoided by using fprintf with

% a matrix. The fprintf comman reads entries row-wise, hence the transpose

fprintf(" %1.0f %5.0f %4.1f\n'",FittedTable")

% What was the chi-square distribution and p value for the initial

% fit, which assumed that each team was equally likely to win? Note

% that this fit requires only the loss of a single degree of freedom

% since the 0.5 did not have to be estimated from the data.

CS2=sum((Games*(ObservedP-pdfseries))."2./(Games*pdfseries));

df2=4-1;

P2 = 1- chi2cdf(CS2,df2);

FittedTable2=[SL Games*ObservedP' Games*pdfseries'];

fprintf(...
"n\n\n Pwin=%6.4f, Chi Square=%5.2f, df=%1.0f, P=%6.2g\n\n’,...
0.5, CS2,df2,P2)

fprintf('Series Observed Expected\n')

fprintf('Length Games Games\n')

fprintf(" %1.0f %5.0f %4.1f\n',FittedTable2")

Bardata=[FittedTable(:,2:3) FittedTable2(:,3)];

bar(4:7,Bardata, 1,'grouped’)

ylim([0 23])

legend('Observed','Expected (Pwin=0.7265)','Expected (Pwin=0.5).,...
'"Location','BestOutside')

xlabel('Series Length")

ylabel('Number of Series')

title('Example 3.2.3");figure(gcf);prnmenu('LM323")


http:Pwin=%6.4f
http:Square=%5.2f
http:df=%1.0f
http:Pwin=%6.4f
http:Square=%5.2f
http:df=%1.0f
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Example 3.2.4

% LMex030204 4th.m or Finuire 2.2 1

LMex030308 3rd.m N e

% Exam 3.2.4, page 135-136 in ul

% Larsen & Marx (2006) o |

Introduction to Mathematical os |

Statistics, 4th edition e

% and Larsen & Marx (2001) Third )

Edition Example 3.3.8 p. 139 .l

% Written by E. Gallagher |

Eugene.Gallagher@umb.edu 0 A

% 10/6/2010 revised 1/11/2010 R Ve e

% A major goal is to produce Figure

3.2.1, which will require a large

% number of points

% 1initialize arrays to store results

% Doomsday airlines has 2 aircraft

--- a dilapidated 2-engine prob plane

% and an equally dilapidated under-maintained 4-enghine prop ploe. Each

% plane will land safely if at least half its engines are working properly.

% Given that you want to remain alive, under what conditions would you opt

% to fly in the two engine plane. Assume that the engines on each plane

% have the same probability of failing and that engine failures are

% independent events.

penginefails=zeros(999,1);

p2enginesafe=zeros(999,1);

p4enginesafe=zeros(999,1);

for i=1:9999
penginefails(i)=i/10000;
p2enginesafe(i)=sum(binopdf(1:2,2,1-penginefails(i)));
p4enginesafe(i)=sum(binopdf(2:4,4,1-penginefails(i)));

end

plot(penginefails,p2enginesafe,'-r'...
penginefails,p4enginesafe,'--g"); figure(gcf)

xlabel('p=P(engine fails)','FontSize',16)

ylabel("P(Safe flight)','FontSize',16)

i=find(p2enginesafe>=p4enginesafe);

mi=min(i);

fprintf('Pick a 2 engine plane if P(enginefails) >= %8.6f \n',...
penginefails(mi));

% A more precise estimate can be had using equation 3.2.3 in text, p 136

% and Matlab's built-in fzero function

Penginefails = fzero(@(p) (3*p-1)*(p-1), 0.001, 0.999);

fprintf('Now solve the problem more precisely using Matlab"s fzero.m\n')

fprintf('Pick a 2 engine plane if P(enginefails) >= %8.6f \n',...

i3

Figure 3. Probability of
landing safely in a 2- or 4-engine plane. Choose the 2

engine plane if the probability of engine failure is greater
then 1/3.
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Penginefails);
P2enginesafe=sum(binopdf(1:2,2,1-Penginefails));
hold on
% This plot simply puts a vertical line in the graph
plot([Penginefails Penginefails],[0 P2enginesafe],'-.b'");
legend('2-engine plane','4-engine plane','Location’', NorthEast')
text(0.36,0.07,'1/3','FontSize',18)
title('Figure 3.2.1','FontSize',20)
figure(gcf)
hold off

Questions page 136-138
3.2.2 Nuclear power rods

3.2.2  The hypergeometric Distribution
Theorem 3.2.2 Suppose an urn contains r red chips and w white chips, wherer +w = N. If n

chips are drawn out at random, without replacement, and if k denotes the number of red chips
selected, then

P(k red chips are chosen) = u (3.2.4)
N
where k varies over all integers for which ( lrc) and ( Wk) are defined. The probabilities
n-

appearing on the right-hand size of Equation 3.2.4 are known as the hypergeometric
distribution.
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Example 3.2.5 Keno

% LMex030205 4th

% Example 3.2.5 Winning at KENO
with a ten-spot ticket _
% Larsen & Marx (2001) 3rd edition (k)
page 130 '
% Larsen & Marx (2006) 4th edition
page 141

% 1if the statitics toolbox isn't loaded
with hygepdf

L L
7 8 9 10

% calls Gallagher's m.file

hypergeop. . e g
%}’I;I:%; Oogunr;bers Figure 4. Hypergeometric probability distribution for a

% n=10 numbers selected pick-10 ticket.

% 1=20 number of winning numbers out of 80
% k=5 pkS5 is the probability of getting
% 5 of the winning numbers
% written by E Gallagher, Eugene.Gallagher@umb.edu
% written 6/20/03; last revised 10/7/10
N=80;n=10;r=20;k=5;
if exist('hygepdf’)==2
pkS=hygepdf(k,N,r,n)
elseif exist('hypergeop')=—=2
% Gallagher's function, which calls Matlab's nchoosek.m for small N
pkS=hypergeop(N,n,r,k)
end
fprintf('Probability of picking 5 correct = %6.4f\n',pk5);

% Optional, find the probability of winning witha 5,6, 7 ... 10

% and plot the pdf

pkgeS=sum(hygepdf(5:(min([r n])),N,n,r));

fprintf(...
'Probability of picking 5 correct = %6.4f and 5 or more = %6.4f\n',...
pkS3,pkges);

% Optional: plot the the full hypergeometric probability density function
% for the ten-spot ticket

p=hygepdf(0:(min([r n])),N,n,r);

bar(0:10,p,1)

set(get(gca,'Children'),FaceColor',[.8 .8 1])

axis([-.6 10.6 0 .31])
ylabel('p_x(k)','FontSize',16),xlabel('k','FontSize',16),

title("Example 3.2.5','FontSize',20)

figure(gcf)
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pause

Example 3.2.6, p. 142 Hung Jury

% LMex030206 4th.m

% Larsen & Marx (2006) 4th edition Example 3.2.6, page 142 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% P = probability of a hung jury

% Given that 2 of the 25 jurors in the jury pool would vote 'not guilty'

% and 23 of 25 would vote guilty

% What is the probability of observing a hung jury?

% Written by Eugene.Gallagher@umb.edu, written in 2001, revised 1/12/11
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Can be solved in a number of mathematically identical one-liners.
P=hygepdf(1,25,2,12)+hygepdf(2,25,2,12)

% or combining in one matlab statement.

P=sum(hygepdf(1:2,25,2,12))

% or using the complement of the probability that no jurors would vote

% guilty:

P=1-hygepdf(0,25,2,12);

Example 3.2.7 p. 142-143 Bullet Striations
% LMex030207 4th.m
% Example 3.2.7, Bullet striations on page 142
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, written in 2001, revised 1/12/11
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
% Solution to bullet striation pattern problem
% will call Matlab statistics toolbox hypergeometric probability
% distribution function or Gallagher's hypergeop.m
% The problem will also be solved using a Monte Carlo simulation.
% There were 4 striations in 25 locations in the evidence bullet
% A test bullet from the suspect's gun was examined and 1 striation out of
% 3 on the test bullet matched the striations on the evidence bullet.
% What is the probability that 1 or or more of the test bullet striations
% would match the test bullet
if exist('hygepdf,'file’)
P=sum(hygepdf(1:3,25,3,4));
elseif exist(‘hypergeop','file')
P=sum(hypergeop(25,3,4,1:3));
else
disp('No hypergeometric function on path')
end
fprintf(...
"Probability of 1, 2 or 3 matches from hypergeometric distribution =%7.5f.\n’,...
P)
% According to the book, small p values indicate that the evidence
% gun and the test gun were the same.
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% What if 2 of the 3 patterns from the test bullet matched the
% evidence bullet?
if exist("hygepdf,'file")
NewP=sum(hygepdf(2:3,25,3,4));
elseif exist('hypergeop','file')
NewP=sum(hypergeop(25,3.,4,2:3));
else
disp('No hypergeometric function on path')
end
fprintf(...
'Probability of 2 or 3 matches from hypergeometric distribution =%7.5f.\n',...
NewP)
% What if all 3 of the 3 patterns from the test bullet matched the
% evidence bullet?
if exist('hygepdf,'file")
NewP=sum(hygepdf(3,25,3,4));
elseif exist(‘hypergeop','file’)
NewP=sum(hypergeop(25,3,4,3));
else
disp('No hypergeometric function on path')
end
fprintf(...
'Probability of 3 matches from hypergeometric distribution =%7.5f.\n',...
NewP)
% Advanced problem:
% This problem is amenable to a Monte Carlo simulation
EB=[ones(1,4) zeros(1,21)]; % evidence bullet with 4 striations
TB=[1000 11 zeros(1,19)];% test bullet with 3 striations, 1 overlapping
trials=9999;
matches=sum((EB+TB)==2);
teststat=sum(hygepdf(matches:3,25,3,4));
results=zeros(trials, 1);
for i=1:trials
% just need to shuffle one of the bullets, just the evidence bullet
EBshuffled=EB(randperm(length(EB)));
% results(i)=sum((EBshuffled+TB)==2); % Probability of 1 match
results(i)=sum((EBshuftfled+TB)>=2); % What is the probability of 1 OR

% MORE matches
end
i=find(results>=matches);MCP=(length(i)+1)/trials;
fprintf(...

'P from hypergeometric =%7.5f & from Monte Carlo = %6.4f +/- %6.4f\n’,...
P, MCP,norminv(0.975)*sqrt(P*(1-P))/sqrt(trials))

% Note that if there HAD been more than 1 match, the spacing of the

% striations would play a key role. The random permutations would have
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% to be performed taking into account the spatial autocorrelation of
% striations on the bullets. ter Braak discusses how to shuffle in the
% presence of spatial autocorrelation.

Example 3.2.8, p. 144
% LMex030208 4th.m
% Larsen & Marx (2006) 4th Edition, p 144
% Wipe your feet carpet cleaning problem
% Written by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
% Written, 10/7/10, revised 1/12/11
% What is the probability of contacting 100 or more customers if
% 1000 phone calls are made in a community of 60000 which has
% 5000 potential customers
if exist(‘hygepdf','file")
P=1-sum(hygepdf(0:99,60000,1000,5000))
elseif exist('LMTheorem030202_4th','file")
P=1-sum(LMTheorem030202_4th(1000,0:99,5000,60000))
else
disp('No hypergeometric function on path')
end
% can be solved using the cumulative hypergeometric probability
% distribution function as well; The cumulative distribution function
% is introduced in Definition 3.4.3 and Theorem 3.4.1
p = 1-hygecdf(99,60000,5000,1000)

Case Study 3.2.1 Apple hardness 1
% LMcs030201 4th.m

% Larsen & Marx (2006) 4th edition 08 |
p. 145
% Written by 08 f
Eugene.Gallagher@umb.edu, written
2001, revised 1/12/11 Pleamplepasses) 04 1 . 35.5 % Pass Rate
% ;
http://alpha.es.umb.edu/faculty/edg/fi :
les/edgwebp.html | 208%

0.2 |

% uses the statistics toolbox m.file o B ®» W w % @ B w W
hygepdf, the hypergeometric pdf
% If there were 10/144 (6.9%)
defective apples in the shipment,
% A shipment is accepted if 2 or
fewer apples in 15 are
% found to have a firmness less than
12 Ibs. What is the probability
% that a 6.9% defective rate box would be deemed acceptable?
if exist('hygepdf,'file’)

P=sum(hygepdf(0:2,144,15,10));

Presumed Percent Defective

Figure 5. If 30 out of
144 apples (20.8%) are defective and the shipper ships if 2
or fewer out of 15 tested are defective, then the probability
that the sample passes is 35.5%. Note that Figure 3.2.5 in
Larsen & Marx (2006, p. 146) is wrong.
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elseif exist ('LMtheorem030202_4th','file")
P=sum(LMtheorem030202 4th(15,0:2,10,144));
else
disp('Hypergeometric functions not on Matlab path.")
end
fprintf('lf defective rate is %4.1f%%, acceptance rate is %4.11%%.\n', ...
10/144*100,P*100);
% If the defective rate was 30 of 144 or 21%.
if exist('hygepdf,'file")
P=sum(hygepdf(0:2,144,15,30));
elseif exist ("hypergeop','file')
P=sum(hypergeop(144,15,30,0:2));
else
disp('Hypergeometric functions not on Matlab path.")
end
fprintf('lf defective rate is %4.1f%%, acceptance rate is %4.1f%%.\n', ...
30/144*100,P*100);
% Produce the operating characteristic curve, Figure 3.2.5
PPD=0:.05:1;
DefectiveApples=round(PPD*144);
lengthApples=length(DefectiveApples);
OCP=zeros(lengthApples,1);
for i=1:lengthApples
SoftApples=DefectiveApples(i);
if exist('hygepdf,'file’)
P=sum(hygepdf(0:2,144,15,SoftApples));
elseif exist ('LMtheorem030202 4th','file")
P=sum(LMtheorem030202_ 4th(15,0:2,SoftApples,144));
else
disp('Hypergeometric functions not on Matlab path.")
end
OCP(1)=P;
end
plot(PPD*100,0CP,'k',PPD*100,0CP,'-k','LineWidth',1.5);
axl=gca;
ax1=gca; % save the handle for the axes of the graph
ylabel('P(sample passes)','Color’,'k','FontSize',16)
set(ax1,"Ytick',[0:0.2:1],"Y Color','k','FontSize',12)
title('Figure 3.2.5','FontSize',20)
set(ax1,Xtick',[0:10:100],’XColor','’k','FontSize',12)
xlabel('Presumed percent defective','FontSize',16);
hold on
% This plot simply puts a vertical line on the graph
plot([20.8 20.8],[0 .355],-.b','LineWidth',2);
% This plot simply puts a horizontal line on the graph
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plot([0 20.8],[.355 .355],-.b','LineWidth',2);
text(22,0.08,20.8%','FontSize',17)
text(22,0.355,'35.5% Pass Rate','FontSize',17)
title('Figure 3.2.5','FontSize',20)

figure(gcf)

hold off

Questions 3.2.18
3.2.18 Corporate board membership
3.2.22 Anne’s history exam
3.3  DISCRETE RANDOM VARIABLES (p 148)
3.3.1  Assigning probabilities: the discrete case
3.3.1.1 discrete probability function

Definition 3.3.1 (p. 149) Suppose that S is a finite or countably infinite sample space. Let p be a
real-valued function defined for each element of S such that
a.0 < p(s) foreachs e S
b. E p@s) =1
foralsecS
Then p is said to be a discrete probability function.

Example 3.3.1 Ace-six loaded dice

% LMex030301 4th.m

% Example 3.3.1 Loaded Ace-six flats dice

% Ace-six flats dice are shortened so that

% p(1)=p(6)=1/4 and p(2)=p(3)=p(4)=p(5)=1/8;

% What is the probability of getting a 7 rolling fair dice?

% What is the probability of rolling a 7 using ace-6 dice?

% Written by Eugene.Gallagher@umb.edu

% Calls crapsmof65 ace6.m, which solves craps probabilities for fair and
% ace-six flats dice

% Written 1/12/11 for EEOS601 by Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

number=7,
[Pexact,Pabexact,Pnumber,Pabnumber]|=crapsmof65 ace6(7);
fprintf('The probability of rolling a %2.0f with fair dice=%6.4f or\n',number,Pnumber)
format rat

disp(Pnumber)

format

fprintf("The probability of rolling a %2.0f with loaded ace-6 dice=%6.4f
or\n',number,Pabnumber)

format rat

disp(Pabnumber)

format

function [Pexact,Pabexact,Pnumber,Pabnumber]=crapsmof65 ace6(number, H)
% format [Pexact,Pa6exact,Pnumber,Pabnumber]|=crapsmof65 ace6(number, H)
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% input: number=value of 1st roll

% H ='H'for Pnumber & odds of making 4, 6, 8, or 10 the hard way
% output: Pexact= Exact probability of winning, given 1st roll = number

% Pnumber=Probability of rolling that number by rolling 2 fair dice.

% Pa6=Probability of rolling that number with loaded ace 6 flats.

% Using the 'method of reduced sample space' from Mosteller, F. 1965. Fifty
% challenging problems in probability with solutions, p. 9

% see craps.m for a more laborious solution using absorbing Markov chains
% written 6/2/03 by E. Gallagher for EEOS601, revised 1/12/11;

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% See Larsen & Marx Example 3.3.6 Ace-six flats are foreshortened so that
% the p(1)=p(6)=1/4 & p(2)=p(3)=p(4)=p(5)=1/8;

if nargin > 1

if H='H'
if mod(number,2) | number ==2 | number==12
error(...
'Can only make even numbers between 4 & 10 the "hard" way')
return
end
end
end

dief=1:6; % create a sample space of two dice rolls; while simultaneously

% creating a matrix of probabilities corresponding to the faces
diep=[1/4 repmat(1/8,1,4) 1/4];
dielf=repmat(dief,6,1); % create a matrix, with each row equal to 1 to 6;
dielp=repmat(diep,6,1); % create a matrix, with each row equal to 1 to 6;
die2f=repmat(dief',1,6); % create a matrix, with each column equal to 1 to 6;
die2p=repmat(diep',1,6); % create a matrix, with each column equal to 1 to 6;
sumdicef=dielf+die2f; % This gives the sample space, the 36 sums of two die.
sumdicep=dielp.*die2p; % This gives the sample space,the 36 elementwise

% products two die.

i=find(sumdicef==number); % find the indices for each value equal to number;
lengthi=length(i); % find how many sums of 2 die equal the number in input;

if lengthi== % only true if the number isn't in the sample space.
disp("Your number isn"t possible, not in the sample space')
number

% The following odd syntax will print the number

fprintf("Y our number, %6.0f, isn"t possible, not in the sample space\n',number)

return % This stops the program after displaying the message;
end
[r,c]=size(sumdicef); % find size of sample space
Pnumber=lengthi/(r*c); % What is the probability of rolling your number with 1 roll

% of two dice

Pabnumber=sum(sumdicep(i)); % sum the probabilities corresponding to the summed faces
% Is the craps shooter an immediate winner?
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if (number==7 | number==11) % 2 logical statements using the | OR command.

Pexact=1; % Matlab performs statements in this if section only
% if the logical statement number equals 7 or equals 11
% is true.
Pa6exact=1;
return
end

% Is the craps shooter an immediate loser?
if (number==2 | number==3 | number==12)
Pexact=0;
Pa6exact=0;
return % exit the function and return to the command window.
end
% Exact probability of making a point - no need for sum of geometric series
% or Markov chains
% Use Mosteller's 'Method of reduced sample space:
% all we need is Probability of rolling a given
% number - which wins - and the probability of rolling a 7, which loses.
% We don't need any of the other probabilities
% (e.g., probability of rolling 2, 3 ...)
% First find probability of rolling a 7, which results in a loss.
j=find(sumdicef==7);P7=length(j)/(r*c); % P7 is the probability of rolling 7
Pa6_7=sum(sumdicep(j));
if nargin>1 & H=="H'
ih=find(sumdicef==number & dielf==number/2);
lengthih=length(ih);
Pnumberh=lengthih/(r*c); % Another way to lose is to roll a soft number
Pnumbera6h=sum(sumdicep(ih))
Pexact=Pnumberh/(P7+Pnumber); % You win or lose if you roll your hard
% number (4,6,8)
Pa6exact=Pnumbera6h/(Pa6_7+Pa6bnumber);
else
Pexact=Pnumber/(Pnumber+P7);,
Pa6exact=Pa6bnumber/(Pa6_7+Pa6bnumber);
end

Example 3.3.2

% LMex030302_4th.m

% Exmaple 3.3.2 p 150-151 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Example of Matlab's symbolic summation

% Suppose a fair coin it tossed until a head comes up for the first time.

% What are the chances of that happeing on an odd numbered toss?

% Written 1/12/11 for EEOS601 by Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

Syms s
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symsum(.5”s,1,inf)
% symsum(p™(2*s+1),0,inf) % Typo in book, can't be evaluated without
% constraining p to values between 0 and 1

symsum(.5"(2*s+1),0,inf)

S*symsum(.25"s,0,inf)

Case Study 3.3.1 London deaths 045 —
% LMcs030301 4th.m oa |

% Case Study 3.3.1 Page 151-152 in 0ss |

% Larsen & Marx (2006) 03 |

Introduction to Mathematical proporti®

Statistics 4th Edition 02 |

% Fit of the Poisson distribution to oasf

Deaths. o |

% Written by oost
Eugene.Gallagher@umb.edu 0 —

Number of Deaths

NumberDead=[0:6]"; . )
NumberDays=[484 391 164 45 11 1 Figure 6. Observed proportions of number of deaths vs.

0 Poisson model predictions. The fit
Pr(;p ortion=NumberDays/sum(Numb of the Poisson model is excellent.
erDays)";

lambda=sum(NumberDead.*Proportion);

% See Larsen & Marx (2006) p. 281 on the Poisson distribution
fprintf('The Poisson parameter is %5.3f\n',Jambda)

ps = poisspdf(0:1000,lambda)";

plus6=sum(ps(7:end));

ps(7)=plus6;ps(8:end)=[];

NumberDeaths=['0 ";'1 ;'2 ;'3 ;'4 %;'5 ";'6+'];

disp('Deaths Days P p(s)")

for i=1:7

fprintf("%3s  %3.0f %5.3f %5.3f\n',NumberDeaths(i,:), NumberDays(i), ...
Proportion(i), ps(i))

end

bar(0:6,[Proportion ps],1,'grouped’)
legend('Proportion','Poisson pdf','Location’,'Best')
xlabel('Number of Deaths','FontSize',16)
ylabel("Proportion','FontSize',16)

title('Case Study 3.3.1','FontSize',20);figure(gct);

Example 3.3.3 Benford’s law

% LMcs030303 4th.m

% Case Study 3.3.3 Benford's Law; Page 152-153 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th Edition

% Fit of the Poisson distribution to deaths.

% Written 1/12/11, Revised 1/12/11 for EEOS601 by Eugene.Gallagher@umb.edu
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
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s=1:9;
BenfordP=log10(1+1./s);
P=repmat(1/9,1,9);

disp(' "Uniform" Benford"s')
disp(' s Law  Law')
disp([s;P;BenfordP]");

Example 3.3.4
3.3.2 Defining “New” Sample Spaces

Definition 3.3.2 A function whose domain is a sample space S and whose values form a finite or
countably infinite set of real numbers is called a discrete random variable. We denote random
variables by upper case letters, often X or Y.

Example 3.3.5 - Not programmed.

3.3.3 The Probability Density Function p. 155

Definition 3.3.3 (p 155) Associated with every discrete random variable X is a probability
density function (or pdf) denoted p,(k), where

p(k)=P ({ s € S| X(s) =k })
Note that p,(k) = 0 for any k not in the range of Xx. For notational simplicity, ... delete all
references to s and S and write p,(k) =P ({X =k }).

Example 3.3.6 Rolling two dice

% LMex030306_4th.m

% Creating a discrete pdf from the sum of two dice

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Example 3.3.6, 4th edition page 155

% Written by Eugene.Gallagher@umb.edu, 10/7/2010, revised 1/12/11
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Find pdf for two dice by full enumeration

% See also crapsmof65.m, crapstable.m

die=1:6;

twodice=repmat(die,6,1)+repmat(die',1,6);

twodice=twodice(:); % convert to a column vector.
mink=min(twodice);maxk=max(twodice);
k=[mink:maxk]';lenk=length(k);ltwod=length(twodice);

% Simple problem, find P(X=5)

fprintf('The probability of rolling a 5 with 2 dice is:\n")

format rat

disp(sum(twodice==5)/ltwod);

fprintf('The entire discrete pdf in rational format:\n\n')

fprintf("  k p_x(k)\n")
pxk=sum(repmat(twodice, 1,lenk)==repmat(k',ltwod,1))"/ltwod;
disp([k pxk])

format
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bar(k,pxk, 1);xlabel('Sum of 2 dice'); ylabel('p_x(k)");
title('Example 3.3.6"),figure(gcf)
fprintf('The entire discrete pdf in numeric format:\n\n")
fprintf(' k p_x(k)\n");
for i=1:lenk

fprintf("%2.0f %5.4f\n"k(i),pxk(i));
end

Example 3.3.7 % Profit and loss probability density function.
% LMex030307 4th.m
% Example 3.3.7
% Acme Industries builds 3 generators daily. Probability of a generator
% failing and needing to be retooled is 0.05. If a generator is shipped,
% the company earns $10,000, if it is retooled, the cost is $2000
% p_x(k) = the company's daily profit;
% Written 1/12/11 for EEOS601 by Eugene.Gallagher@umb.edu
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
n=3;
pfail=0.05;ppass=1-pfail;
profit=le4;
retool=-2¢3;
k=0:3;
p_xk=binopdf(k,3,ppass);
Profit=zeros(1,4); % initialize the results vector
for defects=0:3
Profit(defects+1)=defects*retool+(3-defects)*profit;

end
disp(' Table 3.3.4")
disp(' No."

disp('Defects k=Profit p x(k)");
Out=[0:3;Profit;fliplr(p_xk)];

fprintf("%1.0f $%5.0f

%38.61\n',0Out) 045

Example 3.3.8 Rhonda’s basketball
shots

0.35F

% LMex030308_4th.m o3

% LMex030202 in the 3rd edition Cala|

% Example 3.2.2 Basketball 02T

problem. 0451

% Page 157 in o1 T

% Larsen & Marx (2006) 0.05¢

Introduction to Mathematical 0 m 15 70 25
Statistics, 4th edition Number of free throws, k

% Rhonda has a 65% probability of Figure 7. Discrete pdf for Rhonda hitting two free throws.
making a foul shot and two baskets The expected number of free throws is 3.077 if p=0.65 for
are an individual free throw.
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% required to win
% Solve using absorbing Markov chain & by the method
% in Larsen & Marx, p. 157
% The 3 states for the Markov chain are 0 baskets made,
% 1 basket, 2 baskets.
% Solution using Larsen & Marx's methods followed by solution
% using an absorbing Markov Chain.
% Solve for the discrete pdf for up to 20 free throws.
% Need to find p_xk = P (drill ends on the kth throw)
k=2:20;
lk=length(k);
% Initialize two vectors to store results
p_xk=zeros(lk,1); % Probability that the drill ends on the kth throw
Ek=zeros(lk,1); % Expected values
for i=1:1k
p_xk(i)=(k(i)-1)*(0.35)."(k(i)-2)*(0.65)."2; % Equation 3.3.4 in text
Ek(1)=p_xk(1)*k(i); % Expected value introduced on p 173-175
end
Ek=sum(Ek); % Expected value, L&M 3rd edition p. 192, 4th ed p 157-158
% this will equal tau(1) from
% the absorbing Markov chain described in the Advanced section
disp('The probability density function:')
disp((  k  p_x(k))
disp([k(1:12)' p_xk(1:12)])
bar(k,p xk,1);xlabel('Number of free throws,k','FontSize',16);
set(get(gca,'Children'),FaceColor',[.8 .8 1])
ylabel('p_x(k)','FontSize',16),title('Example 3.3.8','FontSize',20)
figure(gcf)
disp('The expected number of free throws for Rhonda to win:")
disp(Ek)
disp('Sum the final states');
i=find(k>=8);
j=find(k==8);
p_xk(j)=sum(p_xk(1));
k=find(k>8);p_xk(k)=[];
kstring=["2 '3 ;'4 ;'S }'6 ;"7 ';'8+"];
disp('Table 3.3.5")
disp([kstring num2str(p_xk)])
% Solution by absorbing Markov chains
% A very advanced topic: not needed for EEOS601
% Solution using absorbing Markov Chain theory, with absorb.m
% based on Kemeny & Snell (1976) see documentation in absorb.m
% The transition matrix P, with the 3 states, Made 2 is
% an absorbing state.
% Made 0 Made 1 Made 2
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% Made 0 035 065 O
%Madel 0 0.35 0.65
%Made2 0 O 1
P=[.35.650
0.35 .65
0 0 1]
tau=absorb(P); % Tau is the expected no. of throws to win
% In Markov chain terminology, it is the amount of time
% spent in transient states before being absorbed. Winning
% 1s the sole absorbing state of this model.
fprintf("The number of free throws required to get 2 is %6.4f \n',tau(1))
% New game: how long until Rhonda gets 2 in a row?
% Let's use the absorbing Markov chain to find the expected number of free
% throws if winning requires 2 made throws in a row:
% Solution using absorbing Markov Chain theory, with absorb.m
% based on Kemeny & Snell (1976) see documentation in absorb.m
% The transition matrix P, with the 3 states, Made 2 is
% an absorbing state.
% P=
% Made 0 Made 1 Made 2
% Made 0 035 065 O
%Madel 035 0 0.65
%Made2 0 O 1
P=[.35.650
35 0.65
0 0 1]
tau=absorb(P); % Tau is the expected no. of throws to win
fprintf(...
'The number of free throws required to get 2 in a row is %6.4f \n',...
tau(1))

function [tau,N,B,CP,Q,R,tau2,N2,H,MR,VR]=absorb(P);
% format: [tau,N,B,CP,Q,R,tau2,N2,H,MR,VR ]=absorb(P);
% input: P an absorbing Markov transition matrix in 'from rows

% to column' form. Rows are probability vectors and

% must sum to 1.0. At least one main diagonal element=1
% output: tau: Time before absorption from a transient state.
% B: P(ending up in absorbing state from a transient state)
% tau2: variance matrix for tau;N: fundamental matrix

% N2: covariance matrix for N;

% CP: transition matrix in canonical form.

% Q: Submatrix of transient states, R: from transient to

% absorbing state submatrix,

% H: hij the probability process will ever go to transient
% state j starting in transient state i (not counting the

% initial state (K & S, p. 61))
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% MR: expected number of times that a Markov process remains
% in a transient state once entered (including entering step)
% VR: Variance for MR (K & S, Theorem 3.5.6, p. 61)
% written by E. Gallagher, ECOS
% UMASS/Boston email: Eugene.Gallagher@umb.edu
% written 9/26/93, revised: 3/26/09
% refs:
% Kemeny, J. G. and J. L. Snell. 1976. Finite Markov chains.
% Springer-Verlag, New York, New York, U.S.A.
% Roberts, F. 1976. Discrete Mathematical Models with applications
% to social, biological, and environmental problems. Prentice-Hall
%
[pdim,pdim]=size(P);
if sum([sum(P")-ones(1,pdim)].*2)>0.001
error('Rows of P must sum to 1.0")
end
dP=diag(P);
ri=find(dP==1.0);
if isempty(ri)
error('No absorbing states (reenter P or use ergodic.m)’)
end
rdim=length(ri);
qi=find(dP~=1.0);qdim=length(qi);
I=eye(qdim,qdim);
Q=P(qi,qi);
N=inv(I-Q); % the fundamental matrix
tau=sum(N")’;
CP=P([ri' qi"],[ri' qi']); % the canonical form of P
R=CP(rdim+1:pdim,1:rdim);

B=N*R;
if nargout>6 % only if variances requested
Ndg=diag(diag(N));

N2=N*(2*Ndg-1)-N."2;
tau2=(2*N-I)*tau-tau.”2;
H=(N-I)/Ndg;
dQ=diag(Q);oneq=ones(qdim,1);
MR=oneq./(oneq-dQ);
VR=dQ./(oneq-dQ)."2;

end

3.3.4 Transformations
Theorem 3.3.1 See p 158

Example 3.3.9 ¢

3.3.5 The cumulative distribution function
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Definition 3.3.4 Let X be a discrete random variable. For any real number ¢, the probability that
X takes on a value < ¢ is the cumulative distribution function (cdf) of X (written F,(¢)). In formal
notation, F, (f) =P({ s € S| X(s) < t }). As was the case with pdfs, references to s and S are
typically deleted and the cdf is written F,(#) =P (X < 7).

Example 3.3.10 A comparison of pdfs and cumulative distribution functions

% LMex030310_4th.m

% Example 3.3.10 Page 159 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th Edition

% Application of binomial cdf

% Written by E. Gallagher, Eugene.Gallagher@umb.edu

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 10/7/2010, revised 1/12/10

% This problem is a simple demonstration that the sum of the elements of

% a discrete binomial pdf can also be computed as the difference of two

% cumulative distribution functions. This applies to any of the

% discrete pdf's.

P1=sum(binopdf(21:40,50,0.6));

fprintf(’ P using sum of binomial pdfs is %6.5f\n",P1)

P2=binocdf(40,50,0.6)-binocdf(20,50,0.6);

fprintf('P using difference of cumulative pdfs is %6.5f\n',P2)

% Note numerical calculations using different algorithms

% aren't exactly equivalent, P1-P2 is equal to

% -5.55e-016

% With numerical processors, non-integer numbers can not be represented

% exactly. The precision, called eps by Matlab, is the numeric procession

% with the computer and processor on which Matlab being run. If the

% difference is less than eps, two variables should be regarded as

% identical. On my processor, eps is 2.2204e-016, so the difference above

% while trivial is not less than the numeric precision of the processor

% It is unusual for Matlab to not produce exactly equivalent results, or

% results within eps, but anything this close should be regarded as

% 1dentical

fprintf("The difference should be 0, but is %5.3g, which is > eps=%5.3g.\n",...
P2-P1,eps)

Example 3.3.11

% LMex030311 4th.m

% Larsen & Marx (2006) p 160

% Find F_xt for random variable X, defined as the larger of
% two dice.

% Written by Eugene Gallagher, Eugene.Gallagher@umb.edu
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written 10/7/10, revised 1/12/10

% Brute force enumeration, but note that the book provides
% an intuitive solution;
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% Nothing fancy: just creating a 36-outcome sample sapce
die=1:6;
SampleSpace=max(repmat(die,6,1),repmat(die',1,6));
SampleSpace=SampleSpace(:); % creates a 36-outcome vector
ISS=length(SampleSpace);

% creates the cumulative distribution function F_x(t)
Fxt=sum(repmat(SampleSpace,1,6)<=repmat(die,ISS,1))/ISS
% Graph

t=0:0.01:6;

% need to use equation for Fxt from page 160 in text

% rounding down to nearest integer with floor will create

% stepped cdf.

Fxt=floor(t)."2./36;
plot(t,Fxt);ylabel('F_X(t)"),xlabel('t");title('Example 3.3.11");
figure(gcf);

Questions p 160

3.3.4 A fair die is tossed 3 times, X is the number of different faces. Find px(k). [Assigned Fall
2010]
34  CONTINUOUS RANDOM VARIABLES

Pk o005

2 4 6 8 10 12 14 16 18 20

Hour when moniter first fails, k

Figure 8.

Plkl 005

2 4 6 8 10 12 14 16 18 20
Hour when monitor first fails, k

Figure 9. —
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Definition 3.4.1 A probability function P on a set of real numbers S is called continuous if
b

there exists a function f(z) such that for any closed interval [a,b] c S, P([a, b]) = f f() at.

Comment If a probability function P satisfies Definition 3.4.1, then P(4) = f f(®) dt for any

set 4 where the integral is defined.
Conversely, suppose a function f{z) has the two properties
1. f(¢) >0 for all ¢.

2 [ fawyde=1.

IfP(4) = f f(@) dt for all A, then P will satisfy the probability axioms.

3.4.1 Choosing the function f(7)

Example 3.4.1 A simple application of symbolic math integration
% LMEx030401 4th
% Larsen & Marx (2006), p. 163-164
% Written by Eugene.Gallagher@umb.edu for EEOS601
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
% Revised 1/12/2011
syms t
% These two symbolic math integrations solve for two definite integrals
PA=int (1/10,t, 1, 3)
PB=int (1/10,t, 6, 8)
% Are these two definite integrals identical? Simplify will take the
% difference of these two definite integrals and the logical operator ==
% will determine if that symbolic difference is zero.
if simplify(PA-PB)==
disp('The definite integrals are equal.’);
end
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Example 3.4.2 p 164

% LMEx030402 4th 3
% Example 3.4.2 p 164 in
% Larsen & Marx (2006)
Introduction to Mathematical 2 |
Statistics, 4th edition Probability
% Written by penity 18
Eugene.Gallagher@umb.edu for -
EEOS601
% 0.5+
http://alpha.es.umb.edu/faculty/edg/fi 0
les/edgwebp.html : ‘ N
% Revised 1/12/2011
syms t

% Could f(t)=3t"2 for 0 <=t <=1 be used to define a continuous pdf?
% Does the definite integral sum to 1?

P=int(3*t"2,0,1)

fprintf('The definite integral of 3*t"2 from 0 to 1 is %2.1f.\',eval(P))
P1=int(3*t"2,0,1/3)

P2=int(3*t"2,2/3,1)

T=0:0.01:1;

Prob=3*T."2;

plot(T,Prob);xlabel('t',FontSize',16);

ylabel("Probability density','FontSize',16)

axis([0 1.2 0 3]);

% Now fill in the areas

hold on;

T1=0:.01:1/3;yf=3*T1./2;

fill(0 T1 1/3],[0 yf 0],[.8 .8 1])

text(.04,.3,'Area = 1/27','FontSize',18)

T2=2/3:.01:1;yf2=3*T2.72;

2.5}

Area = 19/27

Area=1/27

Figure 10.

fill([2/3 T2 17,[0 yf2 0]',[.8 .8 1]) 09
text(1.02,1.5,'Area = osl
19/27''FontSize',18)

title('Figure 3.4.4''FontSize',20) T
figure(gcf);pause oer
hold Off, f(t) O5[
Example 3.4.3 0.4}

% LMEx030403 4th

% Example 3.4.3 Plotting 3 normal
curves. p 164 in

% Larsen & Marx (2006) o

0.3

0.2

Introduction to Mathematical 0
Statistics, 4th edition

Figure 11.
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% Written by Eugene.Gallagher@umb.edu for EEOS601

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Revised 1/12/2011

mul=-4;

mu2=0;

mu3=3;

sigmal=0.5;

sigma2=1.5;

sigma3=1;

x1=mul-3*sigmal:0.01:mul+3*sigmal;
x2=mu2-3*sigma2:0.01:mu2+3*sigma2;
x3=mu3-3*sigma3:0.01:mu3+3*sigma3;
yl=normpdf(x1,mul,sigmal);

y2=normpdf(x2,mu2,sigma?2);

y3=normpdf(x3,mu3,sigma3);

plot(x1,y1,x2,y2,x3,y3);

axis([-6.5 6.5 0 0.9])

title("Figure 3.4.5','FontSize',20)

ylabel('f(t)",'FontSize',16)

hold on

% This section plots 3 vertical lines

plot([mul mul],[0 normpdf(mul,mul,sigmal)],-b', LineWidth',1);
plot([mu2 mu2],[0 normpdf(mu2,mu2,sigma2)],-g','LineWidth',1);
plot([mu3 mu3],[0 normpdf(mu3,mu3,sigma3)],-r','LineWidth',1);
figure(gcf)

hold off

pause

3.4.2 Fitting f(z) to Data: the Density-scaled histogram

Case Study 3.4.1 5 X107
% LMcs030401 4th.m
% Larsen & Marx (2006)
Introduction to Mathematical a
Statistics, 4th edition :ﬁ;ﬂ“w
% Case Study 3.4.1 p. 167-168 ?
% Written by »
Eugene.Gallagher@umb.edu

% Other m.files using exponential

distribuion O e —
% LMEx050302.m V805 lifetime (hours)
Tubes=[317 230 118 93 49 33 17 26
20]

% Data not sufficient to reproduce graph
Syms y;
s=int(0.0056*exp(-0.0056*y),500, inf)
P=eval(s)

Figure 12.
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fprintf(...

'Based on the exponential model, the P(tube life >500) is %5.4f\n',P)
% Since the exponential model describes a pdf
s2=int(0.0056*exp(-0.0056*y),0, 500)
P2=eval(s2)

fprintf(...

'Based on 2nd exponential model, the P(tube life >500) is %5.4f\n',1-P2)
x=0:750;t=0.0056*exp(-0.0056*x);

edges=[0 80 160 240 320 400 480 560 700];
Tubes=[317 230 118 93 49 33 17 26 20];
Density=Tubes./[diff(edges) 140]./sum(Tubes);
bar(edges,Density, histc')

hold on

plot(x,ft,'r', LineWidth',2)

axis([0 860 0 0.006])

xlabel("V805 lifetimes (hrs)','FontSize',16)
ylabel('Probability density','FontSize',16)
xf=500:860;yf=0.0056*exp(-0.0056*xf);
fill([500 xf 8607,[0 yf 0],[.8 .8 1])

title('Figure 3.4.8','FontSize',20)
figure(gcf);pause

hold off

3.4.3 Continuous probability density functions

Definition 3.4.2 A function Y that maps a subset of the real numbers into the real numbers is
called a continuous random variable. The pdf of Y is the function f,()) having the property that
for any numbers a and b,

b
Pla <Y <b) = f];(y)dy.

Example 3.4.4 Not a Matlab problem
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15

1

Probability
density

05 |

0 0.2 0.4 0.6 0.8

Figure 13.

Example 3.4.5

% LMex030405 4th

% Example 3.4.5 p 169 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
% Revised 1/12/2011

% check whether fyy=6y(1-y), 0 <=y <=1 is a pdf

Syms y

int(6*y*(1-y),0,1)

y=0:0.01:1;

fyy=6*y.*(1-y);

plot(y,fyy);ylabel('Probability density','FontSize',16)
axis([0 1.05 0 1.55]);

title("Figure 3.4.9','FontSize',20)

figure(gcf);pause

3.4.4 Continuous cumulative distribution functions
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Definition 3.4.3 The cdf for a continuous random variable Y is an indefinite integral of its pdf:

Fy0) = [ fy(r)dr = P(SES|Ns)<y) = P(Ysy)

Theorem 3.4.1 Let Fy(y) be the cdf of a continuous random variable Y. Then

d% ) = £,0)

Theorem 3.4.2 Let Y be a continuous random variable with cdf Fy(y). Then
a. P(Y> s)=1-Fys)
b. P(r<Y<s)=Fys)-Fyr)
c. lim Fy(y) =1
y- oo
d. lim Fy(y) =0
y- -

3.4.5 Transformations
Theorem 3.4.3
Questions page 172-173

3.5 EXPECTED VALUES

Definition 3.5.1 Let X be a discrete random variable with probability function p (k). The
expected value of X is denoted E(X) (or sometimes L or [iy) and is given by
EX) = p=py = Y kpy(k)

al k

Similarly, if Y'is a continuous random variable with pdf f,(Y),

E¥) =p=pp = [y0)

Example 3.5.1

% LMEx030501 4th

% Example 3.5.1 Page 175 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
% Revised 1/12/2011

n=3; p=5/9;

format rat;k=0:n;EX1=k*binopdf(k,n,p)'

% Using Theorem 3.5.1, p. 176

EX2=n*p

format
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Theorem 3.5.1 Suppose X is a binomial random variable with parameters » and p. Then
E(X)=np.

Example 3.5.2

% LMEx030502_4th

% Case Study 3.5.2 Page 177 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th Edition
% Written by Eugene.Gallagher@umb.edu

% Fall 2010

% An urn contains 9 chips, N=9, five red (r=5) and 4 white. Three are drawn
% out at random (n=3) without replacement, making this a problem

% involving hypergeometric probabilities. Let X denote the number of red

% chips in the sample. Find E(X), called EX1 here.

format rat

k=0:3;r=5;N=9, n=3;

EX1 = k*hygepdt(k,N,n,r)’

% Using Theorem 3.5.2, p. 177 (after the case study)

w=N-T;

EX2=r*n/(r+w)

format

Theorem 3.5.2 Suppose X is a hypergeometric random variable with parameters, 7, w, and n.
That is, suppose an urn contains » red balls and w white balls. A sample size » is drawn
simultaneously from the urn. Let X be the number of red balls in the sample. Then

rn

E(X) = .
r+w

Example 3.5.3

% LMEx030503 4th

% Example 3.5.3 Page 178 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Revised 1/12/2011

% DIJ bet is $5 with p=1/1000;payoff

60

700:1. What is the expected value? el il

pzle_?’; a0 |

Win=3500;Loss=-5; E (number

Ex=Win*p+Loss*(1-p); of tests) 753 disesserate |

fprintf('The Expected Value is
$%6.2f\n",Ex)

e m o o mm mm mm mm mm om o oo om om o

Example 3.5.4 Blood testing ol
cocktail

% LMex030504 4th

% Example 3.5.4 Page 178 in

103 102 10! 10"
Probability of Disease

Figure 14.
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% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% Revised 1/12/2011

% 50 patients are to be tested for a disease. Their blood samples are split
% into A and B pools. All of the A's are mixed together and tested. If the
% pooled A sample is negative, none of the patients have the disease. If
% the pooled A sample comes back positive, then all of the B samples must
% be tested. Under what conditions would this pooling strategy be more
% effective than testing all 50 samples?

% Use Matlab's minimization routine to find the exact number of tests
p=[logspace(-4,0,40)]'’;

EX=(1-p).~50+51*(1-(1-p).”50);

disp("  Table 3.5.1")

disp(  p  EX)

disp([p EX])

plot(p,EX);xlabel('Probability of Disease','FontSize',16)
ylabel('E(Number of Tests)','FontSize',16)

title('Example 3.5.4",'FontSize',20)

figure(gcf);pause

% find the exact p value requiring 50 tests

PEx50 = fzero(@(p)(1-p).50+51*(1-(1-p).~50)-50, 0.001, 0.999)
semilogx(p,EX);xlabel('"Probability of Disease','FontSize',16)
ylabel('E(Number of Tests)','FontSize',16)

title('Example 3.5.4",'FontSize',20)

hold on

% This plot simply puts a vertical line on the graph

semilogx([PEx50 PEx50],[0 50],-.b', LineWidth',2);

% This plot simply puts a horizontal line on the graph

semilogx([1e-4 PEx50],[50 50],-.b",'LineWidth',2);

s=sprintf('%4.2t%% disease rate',PEx50%*100)
text(PEx50+0.01,25,s,'FontSize',18)

hold off

Example 3.5.5 St. Petersburg paradox

% LMex030505 4th

% Example 3.5.5 Page 180 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu for EEOS601 1/13/11

% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% St Petersburg paradox

syms k

symsum(2"k*1/2"k, 1,inf)

Example 3.5.6 Not working

Example 3.5.7 Rayley distribution, not working
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3.5.1 A second measure of central tendency: the median

Definition 3.5.2 If X is a discrete random variable, the median, m, is that point for which P(X <
m)=P(X > m). In the event that P(X < m)=0.5 and P(X > m ")=0.5, the median is defined to be the
arithmetic average (m+m’)/2.

If Y is a continuous random variable, its median is the solution to the integral equation

[# Gy =05,

Example 3.5.8 w10

% LMEx030508 4th.m

% Larsen & Marx 2006, p. 183 sl
Introduction to Mathematical or|

Statistics, 05|

% 4th edition ey 03| Medan =69215
% Written by E. Gallagher, EEOS, o B
UMASS/Boston T

% What is the median lifespan for a =T

lightbulb with an average lifespan of ‘:1_

% 1000 hours (with lifetime e e e e
exponentially distributed)

% Use Matlab's symbolic math to
solve the definite integral
symbolically

syms y m; int(0.001*exp(-0.001*y),y,0,m)

% use Matlab's minimization routine to find the x that solves the
% equation.

medx=fzero('1-exp(-0.001*x)-0.5',0)

y=0:1e4;

lambda=1000;

fyy=exppdf(y,Jambda); % exponential pdf

plot(y,fyy,'t', LineWidth',2)

ylabel("Probability density','FontSize',16)

xlabel("Hour when light bulb fails','FontSize',16);

title('Example 3.5.8','FontSize',20);figure(gcf)

pause

axl=gca; % get the handle for the bar chart's axes;

hold on

axis([0 1e4 0 1e-3])

xf=medx:100:1e4;yf=exppdf(xf,lambda); ;

fill(fmedx xf 1e4]',[0 yf 0],[.8 .8 1])

s=sprintf('Median = %6.2f h',medx)
text(medx+60,exppdf(medx,lambda),s, FontSize',18)
text(1000+60,exppdf(1000,lambda),Mean = 1000 h', 'FontSize',18)

Figure 15.
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% This plot simply puts a vertical line on the graph
plot([1000 1000],[0 exppdf(1000,lambda)],--k', LineWidth',1);
figure(gcf);pause

hold off

Questions p. 184-186
3.5.2 Cracker jack
3.5.2 The expected value of a function of a random variable
Theorem 3.5.3
Example 3.5.9
Example 3.5.10
Example 3.5.11
Example 3.5.12
Example 3.5.13
Example 3.5.14
Questions 192-193 Not too relevant for EEOS601 Summer 2011
The Variance
Definition 3.6.1 The variance of a random variable is the expected value of its squared
deviations from p. If X is discrete with pdf p,(k),

Var(Y) = o® =E[(Y - p)’]

Y & - wepyk)

al k

If Yis continuous with pdf f(y),

Var(Y) = ¢ =E[(Y - p)]

f o - w ) dy

The standard deviation is defined to be the square root of the variance. That is,

6 = standard deviation = E (k -py* - pk) if X is discrete

\ are
= } o -w? - ) if Y is continuous
\ -

Theorem 3.6.1 Let W be any random variable, discrete or continuous, having mean p and for
which E(W?) is finite. Then

Var(W) = o* = E(W?) - p?

Theorem 3.6.2 Let ¥ be any random variable having mean p and where E(W*) is finite. Then
Var(aW+b)=a’Var(W).

Example 3.6.1

Example 3.6.2
% LMex030602_4th
% An exercise in finding definite integrals and propagation of error
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% Page 197-198 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu, written 2001, revised 1/12/11
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html

% A random variable is described by the pdf fY(y)=2y 0<y<I. What is the
% standard deviation of 3Y+2?

% This problem will calculate the variance of y in a symbolic expression
% and then calculate the variance of a linear equation involving y. The

% symbolic variance of the equation will then be converted to its numeric
% value using eval.

Syms y

EY=int(y*2*y,0,1)

EY2=int(y"2*2*y,0,1)

VARY=EY2-EY"2

VAR3Yplus2=3"2*VARY

STD=(VAR3Yplus2)*(1/2)

% STD is a symbolic variable. It can be converted to a numeric variable
% using Matlab's eval function.

eval(STD)

Questions 3.6.1-3.6.17 p 198-199 All involve calculus

Higher moments (Skip) 199

3.6 Joint Densities (Skip)

3.7 Combining Random variables (Skip) p. 220

3.8 Further properties of the mean and variance (Skip) p 226
Theorem 3.9.1
Example 3.9.1
Example 3.9.2

Theorem 3.9.2. Let X and Y be any two random variables (discrete or continuous dependent or
independent), and let a and b be any two constants. then

E(aX +bY) =aE(X) + bE(Y)

Corollary Let W,, W,, ..., W, be any random variables for which E(W,) <, i=1, 2, ..., n, and let
a, a,, ..., a, be any set of constants. Then

E(a W, +a,W,+...+a W )=a, E(W,) +a,E(W,) +... +a E(W,)

Example 3.9.3
Example 3.9.4
Example 3.9.5
Example 3.9.6
Example 3.9.7
3.8.1 Expected Values of Products: a special case p. 232

Theorem 3.9.3 If X and Y are independent random variables,
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EXY)=EX)-E(T)
provided E(X) and E(Y) both exist.

Questions p. 233-234
3.8.2 Calculating the variance of a sum of random variables (p. 234 -236)

Theorem 3.9.4. Let W,, W,, ..., W, be a set of independent random variables for which E(W?) is
finite for all 1. then
Var(W, + Wy + ... + W, ) = Var(W,) + Var(W,) + ... +Var(W,)

Corollary Let W,, W,, ..., W, be any set of independent random variables for which E(W?) < «
forall I. Let a,, a,, ..., a, be any set of constants. Then

Var(a, W, +a,W, + ... +a W ) = al2 Var(W,) + a22 Var(W,) + ... + anzVar(Wn)

Example 3.9.8 The binomial random variable, being a sum of 7 independent Bernoulli’s', is an
obvious candidate for Theorem 3.9.4. Let X, denote the number of successes occurring on the ith
trial. Then

¥ - 1 with probability p
i | 0 with probability 1 - p

and
X=X, +X, + ... + X, = total number of successes in n trials.
Find Var (X).
Note that
EX)=1-p+0-(1-p)
and
E(X?)=(1)* - p+(0)*- (1-p) =p
SO

Var(X,))= EX)-[EX) T =p - p°
=p-(l-p)

It follows, then, that the variance of a binomial random variableisnp (1 -p ):

Var(X) = Z_; Var(X;) = np(1-p)

Bernoulli trial Hogg & Tanis (1977, p. 66) A Bernoulli experiment is a
random experiment, the outcome of which can be classified in but one of
two mutually exclusive and exhaustive ways, say success or failure ... A
sequence of Bernoulli trials occurs when a Bernoulli experiment is
performed several independent times so that the probability of success
remains the same from trial to trial.
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Example 3.9.9 In statistics, it is often necessary to draw inferences based on I/I_/, the average

computed from a random sample of n observations. Two properties of W are especially
important. First if the W;s come from a population where the mean is p, the corollary to
Theorem 3.9.2 implies that E(W) = p. Second if the W;s come from a population whose

variance is 62, then Var(W) = c%n.

Questions p. 236-237

3.8.3 Approximating the variance of a function of random variables
Case Study 3.9.1
Questions
3.9 Order statistics
Example 3.10.1
3.9.1 The distribution of extreme order statistics
Example 3.10.2
Example 3.10.3
Example 3.10.4
3.9.2 A general formula for f;.(y) [not covered in EEOS601 - Summer 2011]
Theorem 3.10.1 pdf of the i’th order statisitic [not covered in EEOS601]
Example 3.10.5 Flood tide and levee height
3.9.3 Joint pdfs of order statistics
Example 3.10.6
Questoins p. 248-249
3.10 Conditional Densities [Relevant to Bayesian inference]
3.10.1 Finding conditional pdfs for discrete random variables

Definition 3.11.1 Let X and Y be discrete random variables. The conditional probability density
function of Y given x — that is, the probability that Y takes on the value y given that X is equal
to x — is denoted py,, (y) and given by

P = P(¥=y|x-x) = 22D

Px(x)
for py(x) #0.

Example 3.11.1 Interesting example. {Will program eventually}
Example 3.11.2

Example 3.11.3 Sum of two binomials with same p is a hypergeometric
Example 3.11.4

Questions p 253-254

3.10.2 Finding conditional pdfs for continuous random variables
L'Hopital's rule & The fundamental rule of calculus used to derive the formula for a continuous
pdf
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Example 3.11.5
Questions p. 256-257
3.11 Moment-generating functions (not covered in EEOS601 Summer 2011)
3.11.1 Calculating a radom variable’s moment-generating function
Definition 3.12.1
Example 3.12.1.
Example 3.12.2
Example 3.12.3
Example 3.12.4 Moment generating function for a normally distributed random variable
Questions p. 260-261

3.11.2 Using Moment-Generating Functions to Find Moments
Theorem 3.12.1
Example 3.12.5
Example 3.12.6
Example 3.12.7
3.11.3 Using Moment-Generating Functions to Find Variances
Example 3.12.8 Variance of a binomial random variable
Example 3.12.9 Variance of a Poisson random variable. Explains why dimensionally the
variance of a Poisson variable equals the dimensions of the mean of a Poisson variable. The
quadratic term cancels.
Questions p. 266
3.11.4 Using Moment-Generating Functions to identify pdf’s
Theorem 3.12.2
Theorem 3.12.3
Example 3.12.10 The sum of inndependent Poissons is also a Poisson. A similar property holds
for independent normal random variables ... and under certain conditions, for independent
binomial random variables (recall Example 3.8.1)

Example 3.12.11

Y-p
(0}

If Yis a standard normal variable with mean p and variance o the ratio is a standard

Y -p
(0)

normal variable, Z, and we call

a Z transformation.

3.12 Taking a second look at statistics (interpreting means)
Appendix 3.A.1 Minitab applications
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