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Assignment

Required reading

Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its

applications, 4" edition. Prentice Hall, Upper Saddle River, NJ. 920 pp.
Read All of Chapter 10
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Understanding by Design Templates

Under standing By Design Stage 1 — Desired Results
LM Chapter 10 Goodness-of-Fit Tests
G Edtablished Goals

. Students will know how to perform goodness-of-fit tests to compare probability
models with data

. Students will be know how to analyze contingency tables, distinguishing between tests
of homogeneity and independence

U Under stand

. That one degree of freedom is lost for every parameter estimated from data

. The sample-size requirements for goodness-of-fit and chi-sguare contingency table
tests

. The difference between tests of independence and tests of homogeneity

Q Essential Questions

. What is the difference between a test of homogeneity versus atest of independence?

. What is the difference between uncorrelated and independent?

K Studentswill know how to define (in words or equations)

. contingency table, goodness-of-fit tests, homogeneity, multinomial distribution

S Sudents will be able to

. Use a chi-square goodness-of-fit tests to compare empirical observations to model
predictions

. Analyze 2x2 and r x ¢ contingency tables with chi-square and Fisher’s exact tests
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Under standing by Design Stage 2 — Assessment Evidence Week 10 Tu 8/2-8/8
Chapter 10 Goodness-of-Fit Tests

. Post in the discussion section by 8/10/11

. In the lady tasting tea experiment, would the p value change if she had been
allowed to put all 8 cupsin the tea-first or milk-fist categoriesif she wished?
Would it have made a difference to the p value if the lady wasn't told that there
were exactly 4 each of the tea-first and milk-first cups?

HW 4 Problems due Wednesday 8/10/11 W 10 PM

. Basic problems (4 problems 10 points)
. Problem 10.2.2. Mendel’s peas. Hint: use LMex102010_4th.m asa
model

. Problem 10.3.6 Schizophreniain England & Wales, hint: Use
LMex100301_4th.m as a paradigm
. Problem 10.4.4 Prussian horse kick data from question 4.2.10; Use
LMcs100402_4th.m as amodel; just plug in the Prussian cavalry data
. Problem 10.5.2 Use 10.5.3 as a model
. Advanced problems (2.5 points each)
. Problem 10.2.4
. Problem 10.5.8
. Master problems (1 only, 5 points) Return to Case Study 1.2.1 Apply a
goodness of fit test to the runsin the closing price of the S& P 500 for 2011.

| ntr oduction

Chapter 10 isimportant. Before | started teaching EEOS601 and EEOS611 in 2000, we had 6
different professors teaching EEOS601 & EEOS611 over a 13-y period, usually using Sokal &
Rohlf’s Biometry as atext. Those 13 years of students had a curious blindspot. Few if any knew
the difference between tests of correlation and independence. Few knew how contingency tables
should be analyzed. Y ou see, Sokal and Rohlf left tests of independence and contingency table
analysis to the final portion of their text and our professors had never paced the course properly
to reach and teach that material. My colleagues more versed in modern pedagogy than | tell me
that in core courses, one doesn’t have to cover the bases, so to speak. Just teach the students
what they can absorb, and they’ll be able to teach themselves the rest. Sadly, | don’t think that is
the case with statistics. So, with goodness of fit tests tucked in nicely between two-sampl e tests
and regression, let’s cover the bases. What is a goodness-of -fit test and how do you test
contingency tables?
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Chapter 10 begins by deriving the x2 distribution
from the multinomial distribution. Multinomial
distributions arise in the biological and
environmental sciences frequently. Figure 1 showsa
ternary diagram, used commonly in geology to
mark the sediment grain size samples made up of
three components: sand, silt & clay. Such diagrams
are also common in genetics in which they indicate
the relative percentage of homozyous recessive,
homozygous dominant, and heterozygous
individualsin a population. The ternary diagram is SWAWLY, WAV WAWAY
the simplest graphical display of amultinomial f’-'a_? /A VR A S A
vector. Middleton (1999) provides Matlab e i T
programs for programming ternary diagrams. B ,§9 F & ¢ § (
— € Scale—>
Figure 1. A ternary diagram.




EEOS 601
Prob. & Applied Statistics
Week 10, P. 7 of 41

Theorems and definitions

Theorem 10.2.1

Theorem 10.2.1. Let X, denote the number of times that the outcomer; occurs,i =1, 2, ..., t,ina
series of nindependent trials, where p, = p(r;). Then the vector (X, X,, ..., X,) hasamultinomial
distribution and

Pepsy . x, ~ PX, = ky, X, = ky, o X, = k)

o phpklpk
AT AR TR
1
k,=0,1,2,.,m i=1,2,..6 Yk=n

i
i=1

Theorem 10.3.1

Theorem 10.3.1 Letr,, r,, ..., I, be the set of possible outcomes (or ranges of outcomes)
associated with each of nindependent trials, where P(r;)) = p,, i = 1, 2, ..., t. Let X; = number of
timesr, occurs, i =1, 2, ..., t. Then

a The random variable

i (X; - np,‘)z

i=1 np;
has approximately a x* distribution with t-1 degrees of freedom. For the
approximation to be adequate, the t classes should be defined so that np; > 5for
ali.

b. Let k;, ks, ..., k, be the observed frequencies for the outcomesr, r,, ..., I,
respectively, and let np,,, Np,,, ..., NP,, be the corresponding frequencies based on
the null hypothesis. At the a level of significance, H,: f.(y) = f,(y) (or H,: py(K) =
po(k) or Ho: pl = plO’ p2: p20’ Ty pt = pto) ISrquted If

t (k. -np. )
d:E—(’ Pio) > ¥
i=1 npio

wherenp,, > 5for all i.

D =

1-a,2-1

Theorem 10.4.1

Theorem 10.4.1 Suppose that a random sample of n observationsis taken from f.{y) [or py(K)], a
pdf having sunknown parameters. Letr,, r,, ..., r, be aset of mutually exclusive ranges (or
outcomes) associated with each of the n observations. Let p | = estimated probability of ri, 1 = 1,
2, ... t (ascalculated from f(y) [or py(K)] after the pdf’ s s unknown parameters have been
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replaced by their maximum likelihood estimates). Let X; denote the number of timesr; occurs, i
=12, ..t Then
a the random variable
L (X, -np)
Dy =) ———
i=1 np;
has approximately a x* distribution with t-1-s degrees of freedom. For the
approximation to be fully adequate, ther;’s should be defined so that np | > Sfor
ali.
b. to test H,: f(y) =f.(y) [or H,: p«(K) = p,(K)] at the a level of significance, calculate

d

! (ki_nﬁio)z
=)

R Z X 1-0,1-1
i=1 npio
wherek;, k,, ..., k, are the observed frequenciesof r,, r, ..., I, respectively, and

npg B ... 8N aethecorresponding expected frequencies based on the null
hypothesis. If

d, > le—a,t—l—s

H, should be rejected (Ther;"s should be defined so that np , >5for al i)

Theorem 10.5.1

Theorem 10.5.1 Suppose that n observations are taken on a sample space partitioned by the
eventsA;, A,, ..., A, and also by events By, B,, ..., B.. Let p, = P(A)q, = P(B)), and P, = P(A; 1 B)),
i=1,2,..,c. Let X; denote the number of observations belonging to the intersection A; N B;.
Then
a the random variable
r & (X, -np,)
D, = E E . .
i=1 j=1 np,-j
has approximately a x* distribution with rc-1 degrees of freedom (provided np; >
5fordl i andj)
b. to test H,: the Ais are independent of the B;s calculate the test statistic
ro & (k. -npg)
4 -y y G A
i=1 j=1 np,-qj
where k; is the number of observationsin the sample that belongto A, n B, i =1,
2,.,1j=12,..,cand p, agd are the maximum likelihood estimates for pi
and qi respectively. The null hypothesis should be rejected at the a level of
significance if

2
dy > x -0, (- 1)(c-1)
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(Analogous to the condition stipulated for all other goodness-of-fit tests, it will be

assumed that np, g, >5foraliandj.)
Comment The 2 distribution with (r-1)(c-1) degrees of freedom provides an adequate
approximation to the distribution d, only if np. 4, > 5foraliandj.If oneor morecellsina

contingency table have estimated expected frequencies that are substantially less than five, the

table should be collapsed and the rows and/or columns redefined.

Gallagher comment Larsen & Marx misstate the rule here. They are being too conservative.
For r x ¢ contingency tables (i.e., df > 1), all cells should have expected
values>1, and no more than 20% of the cells should have expected values
<5 (Dallal callsthis Cochran’srule,
http://www jerrydallal.com/L HSP/ctab.htm). Even these more lenient
restrictions may be too conservative according to Zar.

Statistical Tests

Fisher’s hypergeometric test

Salsburg (2001) describes the actual story behind Fisher’ s exact hypergeometric test in his book,
“The Lady Tasting Tea.” Thetitle istaken from Fisher’ sinvention of thistest. At a Cambridge
party, alady claimed that she could tell whether the tea or the milk was added to the cup first. So
Fisher designed an experiment to test her claim and invented a statistic to test the null hypothesis
that her selection was due to mere chance. He lined up 8 cups of tea and added milk first to 4 of
the cups and teafirst to 4 other cups and asked the lady to taste the cups and to classify them as
milk first or teafirst. She had to classify the 8 cups of tea into two groups of 4. He described the
experiment in the second chapter of his 1935 book ‘ The Design of Experiments,” and produced
the following table:

Table 1. Fisher’s Tea-Tasting Experiment, published data

Guess Poured First
Poured First Milk Tea Total
Milk 3 1 4
Tea 1 3 4
Total 4 4 8

Now using the hypergeometric probability distribution, Fisher could calculate the probability of
observing that exact result if the null hypothesis was true. He calculated the probability for a
single cell and since the row and marginal totals are fixed in such adesign, it didn’t matter
which cell was chosen to calculate the probability of observing that exact result under the null
hypothesis. For cell n,;, the upper left cell, the probability of observing a 3 could be determined


http://www.jerrydallal.com/LHSP/ctab.htm
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from the row and column totals as shown in the equation below. In that equation, n,, denotes
the marginal total for the 1% row and n,, denotes the marginal total for the 1* column. The exact
probability of observing a 3 in the upper left cell of the 2 x 2 contingency table is 16/70 or
approximately 0.229. Now, in keeping with Fisher’s own theory of hypothesis testing the p value
for the experiment is the probability of what was observed if the null hypothesis was true plus
the probability of observing more extreme observations relative to the null hypothesis. For
Fisher’ stea-tasting experiment, the only more extreme event for the null hypothesis would be to
observe a4 in the upper cell. The probability of observing a4 is exactly 1/70 or approximately
0.014. The p value for the cell shown in Table 1 isthe sum of these two probabilities or 0.243,
which provides no basis for rejecting the null hypothesis at an a level of 0.05.d

il HIRa
SN |20 W W _(3)14-3) 16 _
P(nyy) = - P(3) (8) 18 - 029
n+1 4
HinN
pay =448 - Lo P =P(3) + P(4) = 0.229 + 0.014 = 0.243

8 70
4
Salsburg (2001) was able to track down one of the participants in the Cambridge tea-tasting

experiment and was told that the lady correctly classified every cup. So, these result would
produce the results shown in Table 2. The exact p value is 1/70.

Table 2. Fisher’s Tea-Tasting Experiment, actual results

Guess Poured Fir st
Poured First Milk Tea Total
Milk 4 0 4
Tea 0 4 4
Total 4 4 8

Fisher’stest asan exact test for tests of homogeneity and independence

I’ ve spent more than the usual amount of time describing Fisher’ s exact hypergeometric test
(note he also introduced what is now called Fisher’s exact sign test), because this test will
provide an exact test for tests of independence and homogeneity for any 2 x 2 table. The test was
originally defined for those rare experiments where the marginal totals and total sample size are
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fixed, but the p values produced are appropriate even for 2 x 2 contingency tables where the
marginal totals were not fixed in advance.

Fisher’stest and Matlab

The Mathworks have not published Fisher’s exact test for either 2 x 2 designsor r x ¢ designs
even though both tests exist. On the Mathworks user-contributed filesis a nice program called
fishertest.m, copyrighted and posted by Jos van der Geest, which performs Fisher’ s exact test
for 2 x 2 data.

Fisher’s exact test is the appropriate test for these data. For comparative purposes only, one can
perform a X? test on these data too, using Holsberg' s contincy.m:

D=[31;13]
[H,P,STATS] = fishertest(D)
[p,cs,expected] = contincy(D, ‘chi2’)

These three statements produce the result that the p value for Fisher’s exact test is 0.2429. Under
the null hypothesis of independence choice is independent of classification, the x* statistic with 1
df is 2, with ap value of 0.1573.

What is atest of homogeneity?

Chapter 10 in the text focuses on tests of independence, which is a hypothesis that tests for one
population whether the row category is independent of the column category. Contingency tables
can also be used astest for homogeneity. If each row isregarded as a separate popul ation one
can test whether the proportionsin the first row 1, equal the proportions in the second row T,.
The null hypothesis being tested isH,: 1, = 10,. If the sample sizes are large enough, the two-
sample binomial test, introduced in Chapter 9 Theorem 9.4.1, is appropriate for the hypothesis
test of homogeneity and reporting the effect size (the confidence limitsfor the difference are
appropriate). A two-sample binomial test should never be used as atest of independence.

Now, confusion arises because Fisher’s exact test and the chi-square tests are appropriate tests
for homogeneity and independence. In the literature and in some stati stics textbooks, the x* test
is often, and appropriately, used as atest of homogeneity. Ramsey & Schafer (2002, p 559)
state that the chi square test for homogeneity is also atest for independence, but that confuses
the matter because before the test is performed, the investigator should clearly state whether the
null is for homogeneity or independence. The p value for the chi-square test of homogeneity will
be identical to the Z statistic for the two-sample binomial test. Indeed, for a 2x2 table, the chi-
sguare statistic will be the square of the z statistic. In reporting the results of these tests, be
specific about which hypothesis is being tested even though the p values might be the same.

Sampling schemes producing contingency tables



EEOS 601
Prob. & Applied Statistics
Week 10, P. 12 of 41

There are 6 different sampling schemes that can produce data for a contingency table. These
schemes are based on the goals of the sampling and whether the marginal totals of the
contingency table are fixed in advance. The sampling schemes are:

1. Poisson sampling
a A fixed amount of time (effort money) devoted to getting arandom sample from
asingle population
b. None of the marginal totals is known in advance of the sampling
2. Multinomial sampling Similar to Poisson but grand total fixed in advance (e.g., I'll
collect 100 individuals and determine the number of males)
3. Binomial sampling
a Pr ospective product binomial sampling: Two populations, size of samplesfixed
by the researcher
b. Retr ospective product binomial sampling

i Random samples from popul ations defined by the response variable (e.g.,
lung cancer or not)
ii. Like prospective, but with classification based on response instead of
explanatory variables
4, Randomized binomial experiment: Treatments assigned randomly to subjects or
experimental units
5. The hyper geometric probability distribution
a Both row and columns fixed
b. Example: Fisher’s exact test & Lady drinking tea

Figure 2 from Ramsey & Schafer (2002)  Display 19.3

show that tests of homogenei ty mi ght be Recognizing the sampling schemes and appropriate test hypotheses by
performed on data COl |eCted US- ng a“ 6 noticing which marginal totals are fixed

sampling schemes. But, in designing a “Response)

hypothesis test, it should be made clear from Level 1 Tevel2 Totals

the outset whether atest of independence or ~ zow Factor TVl a0 Ry mpp e
(Explanatory)

homogeneity will be performed. Feel2 Ty Ty B

Totals (@) C, T
In decidi ng whether it is atest of (' Column Totals ) __.Grana’ Total )
homoggnel ty or independence, think ‘1 Marginai Totals Appropriate
pOpu| ation or tWO?,1 Whether the row (Or Sampling Scheme Fixed in Advance Lm‘epen;:;':e g;;?:genem'
column) totals are fixed, and whether the Bt N 5 5

. . . Muitmomial rand Tofal
effect isto be reported as a differencein Product Binomial \/
. . . rospective Row (Expianatory) Totals

prOpOI'tIOﬂS. AS ShOWﬂ n Figure 2, |f the fp.‘:'(iy@(;fiw C‘o.’m:m i’i‘espaw.:w Totals “odds ratio only —p W
row or column totals are fixed in a0VaNCe aS Fpammeme " soth koo ot Toreis & '

part of the sampling scheme, the test for
association between rows and columnsisa
test of homogeneity, not independence. The
very fact that two separate populations can be identified to fix the marginal totals indicates that a
test of homogeneity isinvolved. The converseis not true. The Poisson, multinomial and
hypergeometric sampling schemes can be used for tests of homogeneity or independence.

Figure 2. Six sampling schemes and whether tests
of homogeneity or independence are appropriate.



EEOS 601
Prob. & Applied Statistics
Week 10, P. 13 of 41

The test used can not be used to distinguish between the homogeneity or independence
hypotheses since both the Fisher’ stest and chi-square test can be used to test either either the
homogeneity or independence hypothesis. For atest of homogeneity, the two-sample binomial
test is often the appropriate test mainly because it produces a convenient estimate of the effect
size and produces a 95% confidence interval for the difference in proportions. In terms of p
values, the chi-sguare and two-sample binomial produce identical p values with the chi-square
statistic being the square of the two-sample binomia’s z statistic.

Case Studies and Examples

Case Study 10.3.1

The late Tom Zaret studied zooplankton in Gatun
Lake Panama, especially the role of invertebrate
and vertebrate predators. He did an experiment with
the horned and unhorned morphs of Ceriodaphnia
cornuta, asmall cladoceran (a shrimp-like
organism), shown in Figure 3. The horned morph
had evolved to be resistant to invertebrate
predation, but Zar et (1972) wanted to know the
relative vulnerabilities of the unhorned and horned
morphsto fish predators. He added the prey at their natural densities. In one of the many
experiments (27 April), Zaret added about 100 cladoceransin a 3:1 ratio of unhorned to horned
and then added a pair of fish (Melaniris chagresi). After about one hour, he removed the fish,
sacrificed them, and looked at the cladocerain their guts. There were 40 horned to four
unhorned cladocerans in the fishes' guts. Does this constitute evidence for selectivity by the
fish?

Figure 3. The unhorned and horned morphs
of Ceriodaphnia cornuta. Note that the star
of Texaseyeball in Larsen & Marx (2006)
was not in the original publication.

We can perform a chi-square test based on
Theorem 10.3.1 to find a x? statistic of
5.9394. Since there were only two
categories, this would be compared to a x?
distribution with 1 df (the number of
categories minus 1). Figure 1 showsthe x%,
distribution. The p value for ax® statistic of
5.9394is 0.0148. Note that thisis atwo-
tailed p value. T —_—

0 2 3.8415
z

Figure 10.3.2
T

o o o
kS Y o -
T T T

Probability Density

o
N
T

With these data it would have been possible Figure 4. The x*, distribution

to perform an exact binomial test. What is the probability of observing 40 out of 44 itemsin the
gut being the unhorned morph if the expected proportion is 0.75? In Matlab, thisisaoneline
problem with the solution that the 2-tailed p value (twice the 1-tailed p) is 0.0146, nearly
identical to the result from the x? test:
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P=2* sum(binopdf([40:44],44,3/4));

Larsen & Marx comment that the fish selected the unhorned morph because of its eyespot.
Another interesting possibility suggestsitself based on the 3:1 ratio of unhorned to horned
morphs offered to the fish. Some predators are apostatic generalists, selectively feeding on the
animals that are most abundant. Zar et (1972) only did one experiment (10 May) in which the
unhorned and horned morph were added in nearly equal proportions, and, of the 15 items eaten
in that experiment, 8 were unhorned and 7 were horned. | don’t need a computer to calculate the
2-tailed p value for that experiment. It is 1.0 (Why?)

Case Study 10.3.2

Benford' s law predicts that the first nonzero digits in numbers measuring things in nature are not
random but follow alaw:

pi=log,, (i+1) - 10gy(i), i=1,2, ..., 9

The law should apply whenever the items being measured span more than one order of
magnitude. Auditors can use Benford’s law to find examples of fraud. Table 10.3.2 in the text
provides the first 355 digits appearing in the 1997-1998 operating budget for the University of
West Horida. A chi square test was used to fit the datain a very simple Matlab program:

0O=[111 60 46 29 26 22 21 20 20];
BP=zeros(9,1);
fori=1:9
BP(i)=log10(i+1)-log10(i);
end
N=sum(O);
E=BP*N;
Table100302=[[1:9]' O E (O-E)."2./E]
CHI2=sum((O-E)."2./E)
df=length(E)-1,
alpha=0.05
pval ue=1-chi2cdf (CHI2,df)
criticalval=chi2inv(1-alpha,df)
if CHI2>=criticalval
disp('Reject Ho')
else
disp('Fail to Reject HO')
end

This program returns:

Table100302 =
1.0000 111.0000 106.8656 0.1599
2.0000 60.0000 62.5124 0.1010


http:alpha=0.05
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3.0000 46.0000 44.3533 0.0611
4.0000 29.0000 34.4031 0.8486
5.0000 26.0000 28.1093 0.1583
6.0000 22.0000 23.7661 0.1312
7.0000 21.0000 20.5871 0.0083
8.0000 20.0000 18.1591 0.1866
9.0000 20.0000 16.2439 0.8685
CHI2 =
2.5236
apha=
0.0500
pvalue =
0.9606
criticalval =
15.5073
Fail to Reject Ho

Case Study 10.4.1

DaIa were COl I ectw from al | ‘ at batS' from Oper“ ng Numberof Hits,i Obs.Freq., k; Estimated Exp. Freq., np.
day to mid-July 1996. Players had exactly 4 at bats : o s
4,096 times during that period with the observed =12 » s
frequency of hitsshownin Fgure5. Arethese 4 17 163
numbers consistent with the hypothesis that the

. . . Here the five possible outcomes associated with each four-at-bat game would be the number of hits a
number Of hl ts a pl ayer gets In four at'bats IS playermakes, sor;=0, r; =1 ...rs = 4. The presumption to be tested is that the probabilities of those r:s
bl n0m| al |y dl Srl buted’) are given by the binomial distribution — that is:

P (player gets | hits in 4 at-bats) = (;’)p‘(l-p)“", i=0,1,2,3,4

The Matlab program is shown below:

obs=[1280 1717 915 167 Figure 5. Frequency of hits during 4096
17];hits=[0:4]"; Total=obs* hits; player-gamesin 1996.
estP=Total/(4096*4)

expc=binopdf(hits,4,estP)* 4096
d1=sum((obs-expc).*2./expc)
df=length(expc)-1-1,
P = 1-chi2cdf(d1,df);
fprintf(...
"The chi-square statistic,%6.1f, with %2.0f d.f. has pvalue=%6.4f\n',...
di,df,P)
alpha=0.05;
criticalval=chi2inv(1-alpha,df);
fprintf('The critical value for alpha=%4.2f is %5.3f\n',alpha,criticalval)
ifdl>=  criticalval
disp('Reject null’)
else
disp('Fail to reject null’)


http:alpha=%4.2f
http:alpha=0.05
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end
The program produces:

The chi-sguare statistic, 6.4, with 3 d.f. has pvalue=0.0936
The critical value for alpha=0.05 is 7.815
Fail to regject null

Asnoted by Larsen & Marx (2006, p. 618), many of the assumptions of the binomial model are
violated in areal baseball game and season.

Case Study 10.4.2

Do the deaths of women over the age of 80 in London follow a Poisson pdf? The following
Matlab program solves this problem with the data provided in Larsen & Marx:

Deaths=[0:10]";
obs=[162 267 271 185 111 61 27 8 3 1 0]'; n=sum(obs);

lambda=sum(Deaths.* obs)/n

expc=poisspdf(Deaths,|lambda)™* n;

% Call Matlab's goodness-of-fit test (see help file for Poisson fit)

[h,p,st] = chi2gof(Deaths,'ctrs,Deaths, 'frequency’,obs, ...
'expected’,expc,'nparams, 1)

In the Matlab code below, | also provide the more explicit statements for fitting the Poisson
distribution data.

Case Study 10.4.2
T T

Figure 6 shows the observed and expected
frequencies of deaths of 80+ year old London womel
based on a Poisson model with an estimated
Poisson A=2.1569. The fit doesn’t ook m

unreasonable, but that just illustrates the risk of ]
performing a‘ chi-by-eye' test. If the Poisson model m .
istrue, the probability of observing resultslike N
those observed or more extreme is 0.0002. The Figure 6. Observed and expected
observed Chi-Squal’e statisticis 25.9 with 6 df. At frmuencies under a Poission model of
an o level of 0.05 the chi-square critical value for 6 deaths per day of 80+ year old women in
df is12.592. As noted by the authors, there appears |_ondon.

to more days with O deaths and more days with 5 or

more deaths that account for the departures from Poisson expectation.

Case Study 10.4.3


http:alpha=0.05
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Monthly percent returnsfor IBM stock for a 7-year period are provided. Larsen & Mar x (2006)
carry out a chi-square goodness of fit test comparing these data to a normal model. They bin the
datainto 5 categories and find the x? statistic to be 7.52 with just 2 df, which is greater than the
5.991 critical value.

The full program is provided here:

DATA=[7.26.23.02.728-2.724

6.83.69.2-1.2-0.2-6.4-0.8

-0.8-14.8-13.4-13.6 14.1 2.6 -10.8

-2115.4-218.6-545.310.2

3.1-86-0426169.3-15

456.95244-4055-0.6

-3.1-44-0.9-3.8-1.5-0.79.5

2.0-0.36.8-1.1-424.645

2.74.0-1.2-50-0.64.10.2

8.0-22-3.0-28-5.6-0.94.6

13.6-1.2757.94910.1-35

6.721-1.49.78.23324];
DATA=DATA(:);[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(DATA,0.05)
[h,p,stats] = chi2gof(DATA)

df=length(stats.E)-1-2

histfit(DATA);figure(gcf)

criticalval=chi2inv(1-alpha,df);

fprintf('The critical value for apha=%4.2f is %5.3f\n',a pha,criticalval)

It is more than a little disconcerting that Matlab’s
chi2gof finds that the normal distribution provides
an adequate fit to the IBM stock data. Here is the
full program, which consists of entering the data,
fitting the data to the normal distribution,
performing the chi-square test and plotting the data,
asshownin FHgure7.

Matlab's ¥? statistic is 5.99 based on 7 categories, Figure 7. Histogram of 84 monthly percent
and thus 4 df. It has a p value of 0.1996, which returns. Matlab’s x* goodness-of -fit test has
provides little evidence for rejecting the null ap-value of 0.1996.

hypothesis. The 0=5% critical value with 4 df is9.488. | tried afew other schemes at binning
data, for example into larger groupings, only to produce even larger p values.

Case Study 10.5.1

Matlab doesn’t have a built-in contingency table analysis program, but there is a nice program
available from Anders Holsberg's stixbox toolbox called contincy.m I’ll use it to solve most of
the contingency analysis problems. In the first problem, the contingency tabl e tests whether


http:alpha=%4.2f
http:normfit(DATA,0.05

price isindependent of longevity.
The data are shown in Figure 8.

The Matlab program is just two
lines:
observed=[70 65;39 28;14 3;13 2];
% From contincy from stixbox
toolbox
[p,cs,expected] = contincy(observed
‘chi2)
which produces:
p= 0.0102
cs=11.3026
expected =

78.4615 56.5385

38.9402 28.0598

9.8803 7.1197

8.7179 6.2821
criticalval =

7.8147
Reject Ho
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Table 10.5.6
Still Being  Has Ceased Total
Published Publication
< $1.99 70 65 135
(78.5) (56.5)
CoverPrice 5$2.00 - 52.49 39 28 67
(38.9) (28.1)
52.50 - 52.99 14 3 17
(9.9) (7.1)
53.00+ 13 2 15
(8.7) (6.3) L
Total 136 98 234

Figure 8. Price versus longevity contingency table.

Case Study 10.5.2 Siskel & Ebert

Were the movie critics Siskel &
Ebert rendering judgements that
were independent of each other?
Their reviews are shown in the
following table.

The Matlab program to analyze these
dataisvery brief:
observed=[24 8 13; 8 13 11; 10 9 64]
[p,cs,expected] = contincy(observed,
‘chi2)
[r,c]=size(observed);df=(r-1)*(c-1);
criticalval=chi2inv(.95,df)
if chi2>criticalval

disp('Reject Ho')
else

disp('Fail to reject Ho')
end
which produces:
observed =

24 8 13

Table 10.5.8
Ebert Ratings
Down Sideways Up Total
Down 24 8 13 45
(11.8) (8.4) (24.8)
Siskel Sideways 8 13 11 32
Ratings (8.4) (B.0) (17.8)
Up 10 9 64 a3
(21.8) (15.6) (45.6)
Total 42 30 23 160
But
‘ ‘ 2
(24-11.8)* = (8-8.4)2 (64—45.6)
)= I
11.8 8.4 45.6
=45.37

Sothe evidence is overwhelming that Siskel and Ebert’s judgments are notindependent.

Figure 9. Siskel & Ebert movie reviews.
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10 9 o4
p:

3.3515e-009
CsS=

45.3569
expected =

11.8125 8.4375 24.7500
8.4000 6.0000 17.6000
21.7875 15.5625 45.6500
criticalval =

9.4877
Reject Ho

Case Study 10.5.3
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Data on mobility and suicide rate for 25
American cities provided in Figure 10. The

data were regrouped into above and below

mean as shown in Fgure 11.

Case Study 10.5.3isa2 x 2 analysis and can

be analyzed using a X? test of independence.

It can also be analyzed using Fisher’'s

hypergeometric test. Here isthe call to

Matlab’ s contincy.m and a user-contributed

Table 10.5.9

City Suicides per Mobility City Suicides per Mobility

100,000, x; Index, y; 100,000, x; Index, y;
New York 19.3 54.3 Washington 22,5 371
Chicago 17.0 51.5 Minneapolis 23.8 56.3
Philadelphia 17.5 64.6 New Orleans 17.2 82.9
Detroit 16.5 42.5 Cincinnati 23.9 62.2
Los Angeles 23.8 20.3 Newark 21.4 51.9
Cleveland 20.1 52.2 Kansas City 24.5 49.4
St. Louis 24.8 62.4 Seattle 31.7 30.7
Baltimore 18.0 72.0 Indianapolis 21.0 66.1
Boston 14.8 59.4 Rochester 17.2 68.0
Pittsburg 14.9 70.0 Jersey City 10.1 56.5
San Francisco 40.0 43.8 Louisville 16.6 78.7
Milwaukee 19.3 66.2 Portland 29.3 33.2

Buffalo 13.8 67.6

m.file to perform Fisher’s exact test:
observed=[7 4;3 11]
[p,chi2,expected] = contincy(observed, 'chi2’)
[r,c]=size(observed);df=(r-1)*(c-1);
criticalval=chi2inv(.95,df)
if chi2>criticalval

disp('Reject Ho')
else

disp('Fail to regject Ho')
end
[H,P, STATS] = fishertest(observed, 0.05)

The programs produce:
observed =

Figure 10. Mobility index & suicide
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chi2=
45725
expected =
4.4000 6.6000
5.6000 8.4000
criticalval =
3.8415
Reject Ho
P=
0.0416

Fisher’s exact hypergeometric test produces a p value of 0.0416, dightly higher but preferable to
the approximate p value produced by the x? test. Both tests lead to the same decision: reject H,
that suicide isindependent of mobility.

TABLE 10.5.10

Annotated outline (with Matlab ———
scripts) for Larsen & Marx Chapter s ngnens 4
10 Rate Low (<20.8) 3 11

10 GOODNESSOF FIT TESTS (Week 10)
Karl Pearson (1857-1936) N
10.1 INTRODUCTION ™5
10.1.1 “Any procedure that seeks to determine whether a set of > 4
data could reasonably have originated from some given
probability distribution, or class of probability distribution
iscalled a goodness-of-fit test.
102 THE MULTINOMIAL DISTRIBUTION L
10.2.1 Goodness of fit statistics based on the chi-square statistic Figure 12.
which is based on the multinomial which is an extension of Karl Pearson
the binomial distribution
Theorem 10.2.1. Let X, denote the number of times that the outcomer; occurs, i =1, 2, ...,t,ina
series of nindependent trials, where p, = p(r;). Then the vector (X, X,, ..., X,) hasamultinomial
distribution and

pxi, Xps s X = P(XE = kl’ )(2 = k2’ R X; = kt)
ot o kpk Lk
AT I TR

Example 10.2.1
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%LMex100201_4th.m
% Application of Theorem 10.2.1, Larsen & Marx (2006) Introduction to
% Mathematical Statistics, 4th Edition. Page 601
% An application of the multinomial distribution
% Written by Eugene.Gall agher@umb.edu 11/21/10
P=exp(gammaln(13)-6* gammaln(3))...

*(1/22)72* (2/21)"2* (3/21)"2* (4/21)"2* (5/21)"2* (6/21)"2

Example 10.2.2

% LMex100202_4th.m

% Example 10.2.2

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gall agher@umb.edu 11/21/10
Symsy;

int(sym('6*y*(1-y)"),0,0.25)

pl=eval (int(sym('6*y*(1-y)"),0,0.25))
int(sym('6*y*(1-y)"),0.5,0.75)

p3=eval (int(sym('6*y*(1-y)"),0.5,0.75))
int(sym('6*y*(1-y)),0.75,1)
p4=eval(int(sym('6*y*(1-y)"),0.75,1))
P=exp(gammaln(6)-gammaln(4))* p1* p3"3*p4

10.2.2 A Multinomial Binomial Relationship
Theorem 10.2.2 Suppose the vector (X, X,, ..., X,) isamultinomial random variable with
parametersn, py, Py, ---, P Then the marginal distribution of X, i =1, 2, ..., t, isthe binomial pdf
with parameters n and pi.
Comment Theorem 10.2.2 gives the pdf for any given Xi in amultinomial vector. Since that pdf
isthe binomial, we also know the mean and variance of each Xi — specificaly, E(X;) = np, and
Var (X)) = np(1-p). [Galagher note: thiswill apply to ternary diagrams, see Jumars on feeding
guilds and Matlab environmental statistics book]

Example 10.2.3

% LMex100203_4th.m

% Number of students and variance

% Written by Eugene.Gall agher@umb.edu 11/21/10
n=50

pl = 1-normcdf(90,80,5)

Ex1=n*pl

Varx1l=n*pl*(1-pl)

p2 = normcedf(90,80,5)-normcedf(80,80,5)
Ex2=n*p2

Varx2=n*p2*(1-p2)

p3 = normcdf(80,80,5)-normcdf(70,80,5)
Ex3=n*p3

Varx3=n*p3*(1-p3)

p4 = normcedf(70,80,5)-normcedf(60,80,5)
Ex4=n*p4


mailto:Eugene.Gallagher@umb.edu
http:p3=eval(int(sym('6*y*(1-y)'),0.5,0.75
http:int(sym('6*y*(1-y)'),0.5,0.75
http:p1=eval(int(sym('6*y*(1-y)'),0,0.25
http:int(sym('6*y*(1-y)'),0,0.25
mailto:Eugene.Gallagher@umb.edu
mailto:Eugene.Gallagher@umb.edu

EEOS 601
Prob. & Applied Statistics
Week 10, P. 22 of 41

Varx4=n*p4* (1-p4)
p5 = normcdf(60,80,5)

Ex5=n*p5

Varx5=n*p5* (1-p5)

Questions

10.3

10.2.3 APtests
10.2.4 Mendel

10.2.5 Hypertension
10.2.6 1Q

10.2.7 Pipeline misde
10.2.8 Baseball
10.2.9

10.2.10

10.2.11

GOODNESSOF FIT TESTS: ALL PARAMETERS KNOWN
10.3.1 Frst proposed by Karl Pearson in 1900.

Theorem 10.3.1 Letr,, r,, ..., r, be the set of possible outcomes (or ranges of outcomes)
associated with each of nindependent trials, where P(r;)) = p,, i = 1, 2, ..., t. Let X; = number of
timesr, occurs, i =1, 2, ..., t. Then

a

The random variable
t (X, -np,)*
D-Y X; —np)
i=1 npi
has approximately a x? distribution with t-1 degrees of freedom. For the
approximation to be adequate, the t classes should be defined so that np, > 5for
ali.
Let k,, ks, ..., k be the observed frequencies for the outcomesr, r,, ..., I,
respectively, and let np,,, Np,,, ..., NP,, be the corresponding frequencies based on
the null hypothesis. At the a level of significance, H,: f.(y) = f,(y) (or H,: py(K) =

Po(K) Or H,: Py = Pror Po=Poo» - P = Po) iSTEjECted if

t (k. -np. )
d:E—(’ Pio) > v
i=1 npio

wherenp,, > 5for al i.

1-a,2-1

Case Study 10.3.1: Horned and unhor ned Ceriodaphnia cornuta

% LMcs100301_4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu

% Predation on Ceriodaphnia cornuta by Melaniris chagresi

observed=[40 4]

expected=44*[3/4 1/4]

d=sum((observed-expected)."2./expected);
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% d=(40-44* 3/4)"2/(44* 3/4)+(4-44* 1/ 4)"2/(44* 1/4);
fprintf('Chi-square statistic = % 6.4f\n',d);

P = 1-chi2cdf(d,1);

fprintf(‘Chi-squared 2-tailed p-value=%6.4f\n',P);

% the data would be better analyzed by an exact one-sample binomial test
data=40:44,

% 1 tailed exact binomial test
P=sum(binopdf(data,44,3/4));

fprintf('Exact binomial 2-tailed p value=%6.4f from the binomial pdf\n',P*2);
% or solve using the cumulative binomial pdf
P=1-binocdf (39,44,3/4);

fprintf('Exact binomial 1-tailed p value=%6.4f from the binomial cdf\n',P*2);
% Plot the figure and the critical value

% Use Figure 7.5.1 as a model
df=1;chi05=chi2inv(0.05,df);

alpha=0.05;chi95=chi 2inv(1-al pha,df);

zZmax=7.1; ymax=1.01,

z=0:.01:zmax;

fzz=chi2pdf(z,df);

plot(z,fzz,'linestyle,--",'color','r", linewidth’,3)

ylabel ('Probability Density','FontSize',20)
xlabel('Z,'FontSize',20)

axis([0 zmax 0 ymax])

set(gea,'Ytick',[0:.2:ymax], FontSize', 18)

set(gea, Xtick',[0:2:¢hi 95 chi95], FontSize',18)
ax=axis,

ax1=gca; % save the handle of the graph
title('FHgure 10.3.2''FontSize',22)

hold on

fz=chi2pdf (chi95,df);

plot([chi95 chi95]',[0 fz]',-k', linewidth',1)

% Fill in the upper tail with fill

y2=chi95:.001:ax(2);

fy2=chi2pdf (y2,df);

fymax=chi2padf (ax(2),df);

fill([chi95 y2 ax(2) ax(2)],[0 fy2 fymax Q],[.8 .8 1])
t=sprintf('Area=0.05;
text(chi95+.01,.1,t,'Color','b','FontSize', 20);
figure(gcf)

hold off

Case Study 10.3.2

%LMcs100302_4th.m

% Benford'slaw p 609-611 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 3/15/11


mailto:Eugene.Gallagher@umb.edu
http:t=sprintf('Area=0.05
http:ymax=1.01
http:value=%6.4f
http:value=%6.4f

0O=[111 60 46 29 26 22 21 20 20];
BP=zeros(9,1);
fori=1:9

BP(i)=log10(i+1)-log10(i);
end
% or the same (thanks Wikipedia for equation)
i=[1:9]";BP=log10(1+1./i)
N=sum(O);
E=BP*N;
Table100302=[[1:9]' O E (O-E)."2./E]
CHI2=sum((O-E)."2./E)
df=length(E)-1;
apha=0.05
pvalue=1-chi2cdf(CHI2,df)
criticalval=chi2inv(1-alpha,df)
if CHI2>=criticalval

disp('Reject Ho')
else

disp('Fail to Reject HO')
end
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Example 10.3.1

A somewhat complicated problem, a nice application of the symbolic math toolbox

%LMex100301 4th.m
symsfy

p=zeros(5,1);
f=int(6*y*(1-y),0,0.2)
p(1)=eval(f);
f=int(6*y*(1-y),.2,0.4)
p(2)=eval(f);
f=int(6*y*(1-y),.4,0.6)
p(3)=eval(f);
f=int(6*y*(1-y),.6,0.8)
p(4)=eval(f);
f=int(6*y*(1-y),.8,1)
p(5)=eval(f)
DATA=[0.18 0.06 0.27 0.58 0.98
0.550.24 0.58 0.97 0.36
0.480.110.590.150.53
0.290.46 0.21 0.390.89
0.340.09 0.64 0.52 0.64
0.71 0.56 0.48 0.44 0.40
0.800.830.020.100.51
0.430.140.740.75 0.22];
DATA=DATA();
edges=0:0.2:1;
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[N,Bin]=histc(DATA ,edges);
O=[sum(N(1:2));N(3);sum(N(4:end))];
n=length(DATA);
E=p*n;
E=[sum(E(1:2));E(3);sum(E(4:end))];
chi2=sum((O-E).~2./E);
df=length(E)-1,
fprintf('The chi-square statistic with %1.0f df is %5.2f\n',df ,chi2)
criticalval=chi2inv(0.95,df);
if chiz>=  criticalva
disp('Reject null’)
else
disp('Fail to reject null’)
end
df=length(E)-1;
pvalue=1-chi2cdf(chi2,df)
Questions
104 GOODNESSOF FIT TESTS: PARAMETERS UNKNOWN
10.4.1 Many times the parameters of a probability distribution must be estimated
from the data
10.4.2 One df lost for every parameter estimated, reducing the power of the test

Theorem 10.4.1 Suppose that a random sample of n observationsis taken from f(y) [or p,(K)], a
pdf having sunknown parameters. Letr,, r,, ..., r, be aset of mutually exclusive ranges (or
outcomes) associated with each of the n observations. Let p | = estimated probability of ri, i = 1,
2, ... t (ascalculated from f(y) [or py(K)] after the pdf’ s s unknown parameters have been
replaced by their maximum likelihood estimates). Let X; denote the number of timesr; occurs, i
=12, ..t Then

a the random variable

L (X, -np)
Dy =) —

i=1 np;

has approximately a x* distribution with t-1-s degrees of freedom. For the

approximation to be fully adequate, ther;’s should be defined so that np ; > 5for

ali.
b. to test H,: f(y) =f.(y) [or H,: p«(K) = p,(K)] at the a level of significance, calculate

! (k1 - nﬁio)z
d =) ——" >
i=1 npio
wherek;, k,, ..., k. are the observed frequenciesof r, r, ..., I, respectively, and
np .0 .,.AN  arethecorresponding expected frequencies based on the null

hypothesis. If

1-a,2-1

d, > le—a,t—l—s
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H, should be rejected (Ther;’ s should be defined sothat np , >5for all i)

Case Study 10.4.1 (p. 541) Batting a binomial
% LMcs100401_4th.m
% p 616-617 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
obs=[1280 1717 915 167 17];hits=[0:4]'; Total=0bs* hits;
estP=Total/(4096*4)
expc=binopdf (hits,4,estP)* 4096
d1=sum((obs-expc).*2./expc)
df=length(expc)-1-1,
P = 1-chi2cdf(d1,df);
fprintf(...
"The chi-square statistic,%6.1f, with %2.0f d.f. has pvalue=%6.4f\n',...
di,df,P)
apha=0.05;
criticalval=chi2inv(1-alpha,df);
fprintf('The critical value for apha=%4.2f is %5.3f\n’,a pha,criticalval)
ifdl>=  criticalval
disp('Reject null’)
else
disp(‘Fail to reject null’)
end

Case Study 10.4.2 (p. 542) Fumblesin football in 3" edition

Case Study 10.4.2 Is Death a Poisson process?
% LMcs100402_4th.m

% LMcs100402_4th.m

% Pp. 618-621 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Written by Eugene.Gallagher@umb.edu 11/21/10, revised 3/15/11

DATA=[zeros(162,1);0nes(267,1);repmat(2,271,1);repmat(3,185,1)
repmat(4,111,1);repmat(5,61,1);repmat(6,27,1);repmat(7,8,1)
repmat(8,3,1);repmat(9,1,1)];

% These expanded data needed only for poissfit.m

Deaths=[0:10]};

obs=[162 267 271 185 111 61 27 8 3 1 0]'; n=sum(obs);

% this will fit the Poisson parameter:

lambda=poissfit(DATA)

% Here's a simpler way to cal cul ate the Poisson parameter

lambda=sum(Deaths.* obs)/n

expc=poisspdf(Deaths,|lambda)* n;

% Call Matlab's goodness-of-fit test (see help file for Poisson fit)

[h,p,st] = chi2gof (Deaths,'ctrs,Deaths, frequency’,obs, ...

‘expected',expc, nparams, 1)
% or solve it explicitly
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EX P=expc;

EXP(8)=n-sum(expc(1:7));

EXP(9:end)=[];

OBS=0bs;

OBS(8)=n-sum(obs(1:7));

OBS(9:end)=[];

d1=sum((OBS-EXP).~2./EXP);

df=length(OBS)-1-1;

P = 1-chi2cdf(d1,df);

fprintf(...
"The chi-square statistic,%6.1f, with %2.0f d.f. has pvalue=%6.4f\n',...
di,df,P)

apha=0.05;

criticalval=chi2inv(1-alpha,df);

fprintf('The critical value for apha=%4.2f is %5.3f\n’,a pha,criticalval)

ifdl>=  criticalval

disp('Reject null’)
else

disp(‘Fail to reject null’)
end
% Plot the results:
bar(0:7,[.0;st.E]',1,'grouped’)
axis([-.75 7.75 0 310]);
set(gcea, 'ytick',0:100:300,...

‘xticklabel' {'0"'1%'2"'3"'4"'5",'6";"7+} ,'FontSi z€',20);
legend('Observed','Poisson Expectation’,'NorthEast','FontSi ze',20)
xlabel‘'Number of Deaths,'FontSize',20)
ylabel ("Frequency’,'FontSize',20)
title('Case Study 10.4.2''FontSize',22);figure(gcf);

Case Study 10.4.3 (p. 621)

% LMcs100403_4th.m

% Written by Eugene.Gallagher@umb.edu 11/21/10
DATA=[7.26.23.02.728-2724
6.83.69.2-1.2-0.2-6.4-0.8

-0.8-14.8-13.4-13.6 14.1 2.6 -10.8
-2.1154-218.6-545310.2
31-86-0426169.3-15
456.95244-4055-0.6
-3.1-44-09-38-1.5-0.795
20-036.8-1.1-424645
274.0-12-50-064.10.2
8.0-2.2-3.0-28-5.6-0.94.6
136-1.2757.94910.1-35
6.72.1-1.49.78.23.324];
DATA=DATA(:);[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(DATA,0.05)


http:normfit(DATA,0.05
mailto:Eugene.Gallagher@umb.edu
http:axis([-.75
http:alpha=%4.2f
http:alpha=0.05
http:statistic,%6.1f
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[h,p,stats] = chi2gof(DATA)
df=length(stats.E)-1-2
histfit(DATA);figure(gcf)
criticalval=chi2inv(1-alpha,df);
fprintf('The critical value for alpha=%4.2f is %5.3f\n',alpha,criticalval)
Questions (Page 624-627)
4.2.10 Goodness of fit on horse kicks Assigned Carry out the details for a goodness of fit test for
the horse kick data of Question 4.2.10 Use the 0.01 level of significance.
10.5 CONTINGENCY TABLES
10511 Three types of hypothesis tests
105.11.1 Tests of parameters of pdfs
105.1.1.2 Goodness of fit of pdfs
105.1.1.3 Independence of two random variables
10.5.2 Testing for independence: a specia case
105.2.1.1 contingency table
Jerry Dallal has a nice discussion of what a contingency tableis:

A contingency tableisatable of counts. A two-dimensional contingency table isformed by
classifying subjects by two variables. One variable determines the row categories; the other
variable defines the column categories. The combinations of row and column categories are
called cells. Examplesinclude classifying subjects by sex (male/female) and smoking status
(current/former/never) or by "type of prenatal care” and "whether the birth required a neonatal
ICU" (yes/no). For the mathematician, a two-dimensional contingency table with r rowsand c
columnsisthe set {x;:i=1,...r; j=1,...,c}.

1. In order to use the statistical methods usually applied to such tables, subjects must fall into
one and only one row and column categories. Such categories are said to be exclusive and
exhaustive. Exclusive means the categories don't overlap, so a subject fallsinto only one
category. Exhaustive means that the categories include all possibilities, so there's a category for
everyone. Often, categories can be made exhaustive by creating a catch-all such as"Other” or
by changing the definition of those being studied to include only the available categories.

Also, the observations must be independent. This can be a problem when, for example, families
are studied, because members of the same family are more similar than individuals from
different families.

Jerry Dallal, http://www.jerrydallal.com/L HSP/ctab.htm

Table10.5.1

Table 10.5.1. A contingency table

Trait B
Row

B, | B, Totals

TratA | A, | ny | Ny R,



http://www.jerrydallal.com/LHSP/ctab.htm
http:alpha=%4.2f

A2 n21

Column Totals | C;
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Table 10.5.2. A contingency table with expected

frequencies
Trait B
Row
B, B, Totals
Trait | AL | NP(ADP(By) | nP(A)P(B,) R,
A A, |nPAPE) | PAIPB) | R,
Column
Totas C, C, n

1. Table 10.5.3 shows the estimated expected frequencies under the

assumption that A and B are independent



EEOS 601
Prob. & Applied Statistics
Week 10, P. 30 of 41

Table 10.5.3. A contingency table with
estimated expected frequencies
Trait B
Row
B, B, Totals
Tralt Al Rlclln R1C2/n Rl
A 1A, | RC/n | RCyN R,
Column
Totals G <. :

2. Testing for independence, the general case

TABLE 10.5.4
By B> e B, Row Totals
Ay ki kiz2 ki Ry
Az kx k22 ko Ry
A, kr1 kr2 Ere R,
Column totals Cy > o n

Theorem 10.5.1Theorem 10.5.1 Suppose that n observations are taken on a sample space
partitioned by the events A, A,, ..., A, and also by events B,, B,, ..., B.. Let p, = P(A))qg, = P(B),
andP;=P(A;nB),i=1,2,..,c. Let X; denote the number of observations belonging to the
intersection A; N B;. Then

a the random variable

r c _ 2
D. = E ()(y npy)

i=1 j=1 np,-j

has approximately a x* distribution with rc-1 degrees of freedom (provided np; >
5fordl i andj)

b. to test H,: the Ais are independent of the B;s calculate the test statistic
ro & (k. -npg)

i=1 j=1 np4;

where k;; is the number of observationsin the sample that belongto A, N B;,i = 1,
2,.,j=12.,cadp, an are the maximum likelihood estimates for pi

and qi respectively. The null hypothesis should be rejected at the a level of
significance if
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2
d)y > X\ o r-1ye-1)

(Analogous to the condition stipulated for all other goodness-of-fit tests, it will be
assumed that np, 4, > 5foralliandj.

Comment: The number of degrees of freedom associated with a goodness-of-fit statistic is given
by the formula

df=number of classes- 1 - number of estimated parameters = (r-1) (c-1)

Comment: The x? distribution with (r-1)(c-1) degrees of freedom provides an adequate
approximation to the distribution of d, only if np, qj > 5foradliandj. If oneor morecelsina

contingency table have estimated expected frequencies that are substantially less than 5, the
table should be “ collapsed” and the rows and columns redefined.

Case Study 10.5.1
% LMcs100501_4th.m
observed=[70 65;39 28;14 3;13 2];
% From contincy from stixbox tool box
[p,chi2,expected] = contincy(observed, ‘chi2’)
[r,c]=size(observed);df=(r-1)* (c-1);
criticalval=chi2inv(.95,df)
if chi2>criticalval
disp('Reject Ho')
else
disp('Fail to reject Ho')
end

function [p, cs,expected] = contincy(observed, method)

% Modified from the Stixbox toolbox

%CONTINCY Compute the p-value for contigency table row/col independence.
%

% p = contincy(observed, method)

%

% Thetable observed isacount, the method is
%

% ‘chi2': Pearson chi2-distance

% logL": Log likelihood quote distance
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%

% with default method 'chi2'. The p-value is computed through
% approximation with chi-2 distribution under the null hypothesis
% for both methods.

%
% Seedso CAT2TBL

%  GPL Copyright (c) Anders Holtsberg, 1999

if nargin< 2
method = 'chi2’;
end

if any(any(observed~=round(observed) | observed<0))
error((CONTINCY expects counts, that is nonnegative integers)
end

rowsum = sum(observed’)’;
colsum = sum(observed);

n = sum(rowsum);

expected = rowsum * colsum ./ n;

if stremp(method, ‘chi2’)
cs = sum(sum((expected-observed).”2 ./ expected));
elsaif stremp(method, 'logL")
| = find(observed>0);
cs=2* sum(observed(l) .* (log(observed(l)./expected(1))));
else
error(‘unknown method’)
end

% p = 1 - pchisg(cs, (length(rowsum)-1) * (Iength(colsum)-1));
p = 1-chi2cdf(cs,(length(rowsum)-1) * (Iength(colsum)-1));
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Case Study 10.5.2 Siskel & Ebert
% LMcs100502_4th.m
observed=[24 8 13; 8 1311; 10 9 64]
[p,cs,expected] = contincy(observed, 'chi2’)
[r,c]=sze(0Observed);df=(r-1)* (c-1);
criticalval=chi2inv(.95,df)
if chi2>criticalval

disp('Reject Ho')
else

disp('Fail to rgject Ho))
end

3. Reducing continuous data to contingency tables

Case Study 10.5.3 Mobility and suicide
% LMcs100503_4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th Edition
% Page 635-637
% An example of a2x2 contingincy table
% Analyzed using Anders Holsberg's contincy.m & fishertest. m (Matlab
% Central)
% Written by Eugene.Gall agher@umb.edu, Written 11/21/10
% Placethe datain a2 x 2 table:
observed=[7 4;3 11]
[p,chi2,expected] = contincy(observed, ‘chi2’)
[r,c]=sze(Observed);df=(r-1)*(c-1);
criticalval=chi2inv(.95,df)
if chi2>criticalval

disp('Reject Ho')
else

disp(‘Fail to reject Ho')
end
[H,P, STATS] = fishertest(observed, 0.05)

function [H,P, STATS] = fishertest(M, apha)
% FHISHERTEST - Fisher Exact test for 2-x-2 contingency tables


mailto:Eugene.Gallagher@umb.edu
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H = HSHERTEST (M) performs the non-parametric Fisher exact probability
test on a 2-by-2 contingency table described by M, and returns the

result in H. It calcul ates the exact probability of observing the given

and more extreme distributions on two variables. H==0 indicates that

the null hypothesis (HO: "the score on one variable isindependent from

the score on the other variable") cannot be rejected at the 5%

significance level. H==1 indicates that the null hypothesis can be

rejected at the 5% level. For practical convenience, the variables can

be considered as "0/1 questions' and each observation is casted in

one of the cells of the 2-by-2 contingency table [1/1, /0 ; 0/1, 0/0].

If M isa2-by-2 array, it specifies this 2-by-2 contingency table
directly. It holds the observations for each of the four possible
combinations.

If M isaN-by-2 logical or binary array, the 2-by-2 contingency table
is created from it. Each row of M isasingle observation that is
casted in the appropriate cell of M.

[H,P,STATS] = HSHERTEST(..) adso returns the exact probability P of
observing the null-hypothesis and some statistics in the structure
STATS, which hasthe following fields:

.M - the 2-by-2 contingency table

P -alist of probabilities for the original and all more extreme

observations
.phi - the phi coefficient of association between the two attributes
.Chi2 - the Chi Square value for the 2-by-2 contingency table

H =FSHERTEST (M, APLHA) performsthe test at the significance level
(100*ALPHA)%. ALPHA must be ascalar between 0 and 1.

Example:
% We have measured the responses of 15 subjects on two 0-1
% "questions' and obtained the following results:
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% QL1 0

% Q21 51

% 0 27

% (s0 5 subjects answered yes on both questions, etc.)
M=[51;27]

% Our null-hypothesisisthat the answers on the two questions are
% independent. We apply the Fisher exact test, since the datais

% measured on an ordinal scale, and we have far to few observationsto
% apply a Chi2 test. The result of ...

[H,P] = fishertest(M)

% (->H =1, P=0.0350)

% shows that the probability of observing this distribution M or the
% more extreme distributions (i.e., only oneinthiscase: [60; 1
8]) is0.035. Since thisisless than 0.05, we can reject our
null-hypothesis indicated by H being 1.

The Fisher Exact test is most suitable for small numbers of
observations, that have been measured on anominal or ordinal scale.
Note that the values 0 and 1 have only arbitray meanings, and do
reflect anominal category, such as yes/no, short/long, above/below
average, etc. In matlab words, So, M, M., flipud(M), etc. al give
the same results.

See also SIGNTEST, RANKSUM, KRUSKALWALLIS, TTEST, TTEST2 (Stats Toolbox)
PERMTEST, COCHRANQTEST (File Exchange)

Thisfile does not require the Statistics Toolbox.

% Source: Siegel & Castellan, 1988, "Nonparametric statistics for the

%
%

behavioral sciences', McGraw-Hill, New Y ork

% Created for Matlab R13+
% version 1.0 (feb 2009)
% (c) Jos van der Geest
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% email: jos@jasen.nl

%

% Fle history:

% 1.0 (feb 2009) - created

error(nargchk(1,2,nargin)) ;

if idogical(M) || al(M(:)==1 | M(;)==0)
if "dims(M)==2 & & size(M,2)==
% each row now holds on observation which can be casted in a 2-by-2 contingency table
M =logical(M) ;
A =sum(M(;,1) & M(;,2)) ;
B =sum(M(;,1) & ~M(;,2)) ;
C=sum(~M(;,1) & M(;,2)) ;
D =dze(M,1) - (A+B+C) ;
M=[AB;CD];
else
error('For logical or (0,1) input, M should be a N-by-2 array.") ;
end
elsalf ~isnumeric(M) || ~isequal (size(M),[2 2]) || any(M(:)~=fix(M(%))) || any(M(;)<O0)
error ("For numerical input, M should be a 2-by-2 matrix with positive integers.)
end

if nargin < 2 || isempty(alpha)
apha=0.05;
elseif ~isscalar(alpha) || alpha<=0 ||alpha>=1
error('FHshertest:BadAlpha,ALPHA must be a scalar between 0 and 1.";
end

% what is the minimum value in the input matrix
[minM, minIDX] = min(M(Y)) ;

if minM > 20,
warning(sprintf(['Minimum number of observationsislarger than 20.\n' ...
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'Other gtatistical tests, such as the Chi-sguare test may be more appropriate.])) ;
end

% We will move observations from this cell, and from the cell diagonal to
% it, to the other two. This|leaves the sum along rows and columns intact,
% but it will make the matrix more extreme. There will be minM matrixes
% that are more extreme than the original one.

% We can do that by summing with the matrix dM (created below) until the
% cell with the least number of observations has become zero (which takes
% minM steps).

% dM will beeither[-11;1-1] or[1-1;-11]

dM = ones(2) ;

dM([minIDX (4-minIDX+1)]) =-1;

% The row and column sums are always the same
SRC = [sum(M,2).' sum(M,1)] ; % row and column sums
N = SRC(1) + SRC(2) ; % total number of obervations

if nargout > 2,
STATSM =M ; % origina matrix
dt = abs(det(M)) ;
PRC = prod(SRC) ; % product of row and column sums
STATS.phi = dt / sgrt(PRC) ; % Phi coefficient of association
STATS.Chi2=(N* (dt - (N/2)).”2) | PRC ; % Chi2 value of independence
end

% pre-allocate the P values for each matrix (the original one and the ones
% more extreme than the original one)
STATS.P = zeros(minM+1,1) ;

% now calculate the probality for observing the matrix M and all the
% matrices that have more extreme distributions. In
fori =0:minM

% calculate P value
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STATS.P(i+1) = local_factratio(SRC,[M(?) ; N]) ;
% make M more extreme
M=M+dM;

end

P =sum(STATS.P) ; % Total probability
H=P<apha; %]lsitlessthen our significance level?,
% If so, we can reject our null-hypothesis

% END OF MAIN FUNCTION

function FR = local_factratio(A,B)
% See FACTORIALRATIO for detailed help and comments
% http://wvww.mathworks.com/matlabcentral /fileexchange/23018
A=AA>1)-1;
B=B(B>1)-1;
maxE = max([A() ; B() ; 0]) ;
if maxE > 1 && ~isequal(A,B),
R = sparse(A,1,1,maxE,2) + sparse(B,2,1,maxE,2) ;
R = flipud(cumsum(flipud(R))) ;
R=(R(,1) - R(:,2)).";

X =2:(maxE+1) ;
g=find(R) ;
FR = prod(X(g)."R(q)) ;
else
FR=1;
end

Appendix 10.A.1: Minitab applications

2. Taking a second look at statistics (outliers)
1. Can data fit amodel too well: Gregor Mendel’ s data
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