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Chapter 23: Elements of Research
Design

Class 25, 5[11/09 W
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Slide 1 Chapter 23: Elements of Research
Design

NOTES:

HW 16 due Tues 5/12/09 Noon

Submit as Myname-HW16.doc (or *.rtf)
Read Chapter 14 Multifactor studies without replication

For Weds read Chapter 23: Elements of Research Design
For Monday Chapters 18-19: Comparisons of Proportions or Odds
Final Class: Weds May 13 Research designs Designs

Class schedule May 6 (Nesting and Experimental Designs), May
11 (Overview of generalized linear models) Exptl design May 13
W Last class

o \Wimba Sessions: new times: Monday night 8 pm-9
® Homework 16: Due Tuesday 5/12/09 Noon

e Final Exam 5/22/09 Friday 8-11 am. This is the official time
» Or 5/19/09 Tuesday 8-11 am. I'll find a room

Slide 2 HW 16 due Tues 5/12/09 Noon

NOTES:

Display 23.4

Checklist of tasks involved in the design of a study

O 1. State the objective. Whar is the question of interest?

O 2. Determine the scope of inference.
Wil this be o randomized experiment ar an observational study?

Slide 3

NOTES:

What exp ar sampling units will be used?
What are the popilarions of interest? |
O 3. Understand the system under study. ‘last
[ 4. Decide how to measure a response. ork (1 6),
[ 5. List factors that can affect the response. 1s due
Design factors
Factors to vary (treatments & controls) 3y 5/1 2
Factors 1o fix ‘'moved
Factors to control by design (blocking) 5/11

Factors to comrol by analysis (covariates)

Factors 1o control by randomization
O 6. Plan the conduct of the experiment (time line)
O 7. Outline the statistical analysis.

<«—Attempt this

O & Determine the sample size
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Elements of Research Design

Chapter 23

Slide 4 Elements of Research Design

NOTES:

Display 23.1

Four possible toa Micl interval

Practica

pam

A

A= panible parameicr ralnes —9

Slide 5

NOTES:

Display 23.2

The 100(1-21*s confidence interval for the difference between the means of
o groups of study units
Hnterval = (Estimate - Halfwidth, Estimate ~ Halfwidily

4 paranieres vainer —%

100(1-)%
confidence inrerval

Extimate = (Sample I average) - (Sample 2 average)

Tagia 1o Rewoe Sz Sunding
Piocedos
1 1
= Halfwidth B 1-002) (Pooled it of SD) ) —— # —
3 m "
O F

Slide 6

NOTES:
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Display 23.3

Mustration of the i I precision in estimating a elfect by use

8 Treated
ot

: ?’ I'.n.nn.:.n Effect

Residml 5D

Covarieir

eAshland cancer
cluster

eDeath penalty &

race

But, be aware of the
regression artifact

Slide 7

NOTES:

Recall hypothetical test of gender
effects

Slide 8 Recall hypothetical test of gender
effects

Read Campbell & Kenny Chapters 4 & 5

® Are women inferior in mathematics?
e Randomly select 500 women & 500 men for admission to a intense workshop on
advanced mathematics.
e Give both groups a pretest of mathematical ability
» In the simulation (rtm-ck.sps) generate test scores by 4 tosses of a die. Assign males 4
units higher score in both pre & post test

= Males:  sum of 4 dice + 4
= Females: sum of 4 dice + 0.

e Assume that the workshop does NOTHING to improve ability for either group
e Retest each student, the post-test, which is modeled to have a a correlation of
0.5 between pre- & post-test
» 2 dice the same, 2 new dice throws for each student
e Test whether males did better than females in this advanced workshop, even
after controlling for their previous math background

NOTES:

MALE Pre-Test

©coo OMALE Post-Test
o ocooo °
~ EEMALE Pre-Test
=7 0oocoo0 o o
o ooo o o FEMALE Post-Test
o 00000000

cocoocoooo oo
00 0000000 000 O
0 ©00000000000000
0000000000000 O
00©0000DO0O000OO
00000000DO00000OQ
©000000000Q00O
>0 0000000000000
©00000000000
©00000000000 o
cooo0ooco0oo0000 O
©0000000OO 0O
©{ 00000000000 0
o 000000
cooo
oo 0

Post-test score

o

Pre-test score

Slide 9

NOTES:
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Slide 10
30 [ Pretest Score
0™ o™ [ Posttest Score
2| o
o
NOTES:
s
54 o !
ae rene
FEMALE
Slide 11
Male Posttest Score = 8.21 + 0.54 * Pretst
R-Square = 0.28
;EMALE
B Fevae A flawed
. 2 interpretation:
o 7 Males did better NOTES
o . . -
3 o even after
2 I ‘accounting for’
8 e [controlling for’,
g ‘adjusting for’,
- ‘including as a
o covariate’]
T 1 r ' differences in
Pretest Score Inltlal

mathematical
Female Posttest Score = 6.17 + 0.55 * Pretst abil |ty'
R-Square = 0.32

Flawed interpretation: Females score
2 points less (1.9 * 0.4) on the post-
test, after ‘supposedly’ controlling for
the effect of previous mathematical

Slide 12 Flawed interpretation: Females
score 2 points less (1.9 = 0.4) on the post-
test, after ‘supposedly’ controlling for the
effect of previous mathematical ability

T -18
ability (p<10™®) (p<10-18)
Coefficients”
Unstandardized Standardized

Coefficients Coefficients 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound  Upper Bound
1 (Constant) 8.146 486 16.777  7.8E-056 7.194 9.099
Pretest Score 545 026 542 20736 11E-079 493 596
FEMALE -1.927 1209 -.240 9198  21E-019 -2.338 -1.516

a. Dependent Variable: Posttest Score

But, the simulation is set so that the
workshop didn’t have any effect on
either group!

NOTES:
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Simpson’s paradox and the need to
analyze data on the appropriate scale
(errors due to aggregated data)

Slide 13 Simpson’s paradox and the need
to analyze data on the appropriate scale
(errors due to aggregated data)

NOTES:

Covariates, the ecological fallacy &
Simpson’s paradox

Slide 14 Covariates, the ecological fallacy
& Simpson’s paradox

® The regression artifact, improperly accounting
for a covariate
» Campbell & Kenny
» Background effects not properly accounted for

e Simpson’s Paradox & the Ecological Fallacy

» With large scale aggregated (grouped) data, factor A
may be positively associated with factor B but at
smaller scales in groupings, space, or time, the factor A
may really be negatively associated with factor B

» Inferring individual responses from aggregate variables

» This is a key error, largely ignored or unknown to
analysts, in the analysis of environmental data

NOTES:

Simpson’s Paradox: failure to include covariates

http://plato.stanford.edu/entries/paradox-simpson/
At UC Berkeley, 13 males 1.2 What bs Siinpson’s Parados™: A Iiagaosh
& 13 females applied for F s el mashers s syl
staff positions: 7/13 males <A
hired but only 6/13 females 1
hired :

Z »
o cent. The History Department bas favonred
o aply Departuient enehit mien apply and vix ae hived, and five seaen apply al foe
for men 15 seventy-five percent md for women il is erghty percent. The Geomaplry

X Uiversity ns o whole 13 l 13w oy

rabe for women s hwenty-five

Drepastusent s favomred wonsen over men ot agross o 0 2 il
fio_jobis, annd 7 neen and & women were hived The success vate for male applicants is syeater than the success rate

fon fensale applicamte
wa  ween  Bickel et al. 1975 Sex bias in

e e graduate admissions: data
University 713 613 from Berke|ey_ Science

Slide 15 Simpson’s Paradox: failure to
include covariates

NOTES:
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Simpson’s paradox

Analyzing aggregated data

eExamples:

» Berkeley graduate admissions: P. J. Bickel, E. -
A. Hammel and J. W. O'Connell (1975), "Sex LTS
bias in graduate admissions: data from ¥
Berkeley", Science 187: 398-404.

» Agresti’s death penalty case study

e An association between a pair of
variables can consistently be inverted
in each subpopulation of a population

when the population is partitioned. e.g.,

a medical 1t can be iated

with a higher recovery rate for treated

patients compared with the recovery
rate for untreated patients; yet, treated
male patients and treated female
patients can each have lower recovery
rates when compared with untreated
male patients and untreated female

patients. .

Slide 16 Simpson’s paradox

NOTES:

Berkeley Gender discrimination

http:/iwww.uvm.edu/~dhowell/lies4thedition/Classfolder/Simp

son_html
Major [N Male{N ”".Ilc ki i\-:unullu irunullu "ul:u_m;c l"-]:‘;!‘-
Depart. Applied Admitted Admitted Applied Admited Admitted Ratio
A 825 512 .62 108 89 0.82 286
B 360 353 (.63 25 17 (.68 1.25
C 325 1200 0.37 593 202 034 .88
D 417 138 0.33 375 202 (54 230
E 191 53 (.28 93 M .24 0.82
F 373 22 (.06 341 24 0.07 1.20
Sum 2691 1198 (.44 1835 628 0.34 0.65

Bickel et al. 1975 Sex bias in graduate
admissions: data from Berkeley. Science

Slide 17 Berkeley Gender discrimination

NOTES:

Simpson’s paradox & magazine
subscriptions

Wagner 1982 Amer Stat.

Table 1. Expiring Subscriptions, Renewals, and Renewal
Rates, by Month and Subscription Category

Source of Currant Subscription
Previous Direct Subscrption Catalog

Jan rate >
Feb rate in

Montt Gift  Renewal Mail Sarvice Agent  Owverall h
January L
Total 3594 18364 2986 20,862 149 45955 | subcategory
Renewals 2,918 14,488 1,783 4,343 13 23,545
Rate B12 789 597 208 oar 512
February
Total B84 5140 2224 BG4 45 8157
Ranewals 704 3807 1,134 122 2 5,869
Rate 796 780 510 141 D44 B4

Slide 18 Simpson’s paradox & magazine
subscriptions

NOTES:

Page 6 of 25
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The ecological fallacy

Slide 19 The ecological fallacy

Simpson’s paradox & the ecological fallacy

eEcological fallacy A Salution to
> [also called Ecological the Eeological
inference problem] E Inference

» Error in predicting individual

behavior from aggregated data.

Introduced by Robinson (1950)
» A solution proposed by

Harvard’s Gary King (1997).

®Errors can often result

from inferring individual
behavior from aggregated
data.

NOTES:

Need to control for race of victim

Slide 20 Need to control for race of victim

An example of Simpson’s paradox

An Introduction

7 /
Hite K
ctims \Pclﬁs

Figure L1 Peroens receiving death enabte

NOTES:

Is there really a racial bias in Florida
death penalty cases?

Slide 21 Is there really a racial bias in
Florida death penalty cases?

White defendants are MORE likely to get the death penalty
than black defendants!:

11% to 7.9%
Death
Pemalty
Victim's Race | Defeadant’s Race | Yes | No | Total | % Yes
Whi White o |a1a] 467 | 103n | 4
ite
Black || 4 :z.n-.‘/
e White 0| 16| 16 | ae :;
i
Black 4 |139] 1 | 20
White 53 (40| 43 [ s
Tatd
Black 15 [176] 1o | 70%

Agresti312deathpenalty.sav

NOTES:

Page 7 of 25




Class 25; Sleuth Ch 23 Designs

Slide 22 Death penalty conviction
P H ‘ ’
(3 93 9
Death penalty conviction ‘appears appears’ independent of defendant’s race
independent of defendant’s race
p=0.142 (1-tailed) if race of victim not considered
Defendant Race * Death Penalty Crosstabulation
Death Penalty
Yes No Total
Defendant ~ White Count 53 430 483
Race % within Defendant Race 11.0% 89.0% 100.0% NOTES :
Black Count 15 176 191
% within Defendant Race 7.9% 92.1% 100.0%
Total Count 68 606 674
% within Defendant Race 10.1% 89.9% 100.0%
Chi-Square Tests
Asymp. Sig.  Exact Sig.  Exact Sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 1.469° 226
Continuity Correctior? 1.145 1 .285
Likelihood Ratio 1.536 1 215
Fisher's Exact Test 258 .142
faer e
N of Valid Cases 674
a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 19.
27.
Slide 23 Must include race of victim as
Must include race of victim as covariate
covariate
Mantel-Haenszel Common Odds Ratio Estimate
Estimate 412
In(Estimate) -.887
Std. Error of In(Estimate) 371
Asymp. Sig. (2-sided) 017 .
Asymp. 95% Confidence Common Odds Lower Bound 199 NOTES M
Interval Ratio Upper Bound .852
In(Common Lower Bound -1614
0Odds Ratio) Upper Bound -160

The Mantel-Haenszel common odds ratio estimate is asymptotically normally
distributed under the common odds ratio of 1.000 assumption. So is the natural log of

e The odds of a black
Calculate inverse of odds ratios defendant getting death

or transpose a col or row: penalty are 2.4 times
([0.852 0.412 0.199]).A-1 higher than a white

ans = 1.1737 2.4272 5.0251 ) defendant when victim’s

race is considered (p=0.02,

95% Cl11.17 to 5.03)

Simpson’s paradox

Driven by strong association between victim’s & defendant’s
] race, Agresti (1996, Fig 3.2)
11.3% if -

———22.9%

02

Slide 24 Simpson’s paradox

NOTES:

Figurn 13 Proporion mestving deah prosy by defried’s ace. comsraiing and igmoring vict

vi(;lt_itﬁ{;:ﬂm J o | If victim white,

\4\/1 IOe°/ — ] black odds 2.3
MR V\;)hite s times white (95%
dgfendantsm | Cl: 1.1t0 4.8)
glvetrr\1 the \ 7.9% of black
pgﬁalty N ) defendants

N T [ If victim’s race not ]
Detendants Face considered, little difference

between blacks & whites

Page 8 of 25
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Race of " . Hae:: i
Voting-Age Vating Decision _ ™ 2
Fersom Democeat Republican Mo Vote

black ? ? ? 55,05

white ? ? 7 25 e

19,896 10936 W s

Table 1.1 The Ecological Inference Problem at the District Leve
The 1990 Election to the Ohio Stabe House, District 42, The 504
is to infer from the marginal entries (each of which is the sum o '™
the corresponding row or columa b the cal) st —

eExamples of ecological
inferences by Gary King

eoPredicting vote based on

race, gender, income Tl 13 Sampl Ecslogia Iferancer: A Oho Staie

[} Dt Witere fricam Dewccral
> Germany 1932 i it Wi Boitien. 1Mo 190 Sewn
» Florida 2000 “Seabermamt of Gomlon G, Herdersonn.* pomented s part

of an exhilst i fodimal coust. Figures sbove (00% ame
logicaily jrpemsivie

Slide 25

NOTES:

E‘;:‘:\:-fﬁxr Voting Decision l
Persan Democrat  Republican  No Vote
black ? ? ? 55,054
white ? ? ? 25,706
19,496 10936 9928 80760

Table 1.1 The Ecological Inference Problem at the District Level
The 1990 Election to the Ohio State House, District 42. The goal 1w
s to infer from the marginal entries (each of which is the sum of 252

the ing row or columal to the coll col

eoKing'’s solution:

eComputer intensive maximum
likelihood fit
» Identifying all models that are compatible
with marginal totals
» C inil i so that i
results (108% voting) can not occur
» Finding optimal max likelihood solutions

®P. S. Gore likely won Florida in 2000

Slide 26

NOTES:

Covariates, necessary & important

Must include relevant covariates or the test & effects will be

oEffects should be assessed, T a0
taking into account the effects - _|
of covariates

eManly (1992) on fluoridation &
cancer rate
» Fluoridation in 1952-1956
» 10 fluoridated and 10 non-
fluoridated cities matched

ucridated cities

——— e Manly 1992

Slide 27 Covariates, necessary &
important

NOTES:

Page 9 of 25
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Does fluoride cause cancer?

Manly (1992) Chapter 1

eFluoridated cities: Chi, Phi, Balt, Clev,
Wash, Milw, St.L, SF, Pitt & Buff
eNon-fluoridated: LA, Boston, NO,
Seattle, CIN, Atl, KC, Columbus,
Newark, Portland ]
eBut
» population dropped in fluoridated cities from
11.9e6 (1950) to 10.8e6 (1970) L * 3
>N i ion i from6.3 "y

million to 7.3 million
» Growing cities attract younger residents with
lower cancer rates
eDifferences can be explained by
differences in age, sex & race (Oldham
& Newell 1977)
eThere is also spatial pattern in the
cities, which could cause cancer rate
differences

Slide 28 Does fluoride cause cancer?

NOTES:

Number of cases needed, overfitting &
statistical power

Slide 29 Number of cases needed,
overfitting & statistical power

NOTES:

Overfitting: too many covariates

Harrell (2001, p. 60)

“When a model is fitted that is too complex, that is it
has too many free parameters to estimate for the
amount of information in the data, the worth of the
model (e.g., R?) will be exaggerated and future
observed values will not agree with predicted
values. In this situation overfitting is said to be
present, and some of the findings of the analysis
come from fitting noise or finding spurious
associations between X and Y”

Slide 30 Overfitting: too many covariates

NOTES:

Page 10 of 25
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Number of cases needed for
regression (1 of 2)

Slide 31 Number of cases needed for
regression (1 of 2)

Harrell (2001, p. 61)
® Number of predictors shoul% be less than m/10

or m/20 where m is the limiting sample size
shown below
o Candidate variables must include all variables

screened for association with response,
includina nonlinear terms and interactions

TABLE 4.1: Limiting Sample Sizes for Various Response Variables
“Type of Response Variable Limiting Sample Size m

Continuous n (total sample size)
Binary min(n;,na)
Ordinal (k categories) n- Sf___1 nd d

number of failures ©

Failure fsl]r\'l\mll time

NOTES:

Number of cases for regression
(2 of 2)

Slide 32 Number of cases for regression

(2 of 2)

Tabachnik & Fidell (2001, p 117)

e For multiple regression (from Green 1991)

> N> 50+ 8m, where m is the number of explanatory variables, for testing R?,
and

>N > 104 + m for individual predictors

> A higher case to explanatory variable ratio is needed when
= Effect sizes are small
= Data are skewed
= Measurement error is expected in explanatory variables

> Automated selection procedures (statistical regression)
= Cases > 40 * explanatory variables

> Green’s more precise rule,
=N > (8/f“)+ (m-1), where fz =0.01, 0.15, and 0.35 for small, medium and large effect

sjzes.
= f5= R?/(1-R?), where R? is the expected squared multiple correlation coefficient

NOTES:

Slide 33 Power analysis

NOTES:

Power analysis

Prospective not retrospective

Page 11 of 25
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The 1004 1-c2)% confidence interval for the difference between the means of

two groups of study snits

Interval = (Estimate - Halfwidth, Estimate + Halfwidi)

e

Slide 34

TR
confidence interval

v
Estimate = (Sample | average) - (Sample 2 average

NOTES:

Neyman-Pearson Cl’s

Slide 35 Neyman-Pearson CI’s

Four passible outcomes ta o confidence inferval procedure

NOTES:

Type | and Il errors

Slide 36 Type I and II errors

Accept H, should be ‘tentatively accept H_’

Accept H
Our
Decision
Reject 11,

True State of Nature
° NOTES:

Hy is true H s true
Correct Type 11
decision error
Type I Correct
error decision
'+ N3 F__D. ¢

Page 12 of 25
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Calculating Type Il error

Slide 37 Calculating Type II error

Must specify alternate hypothesis (H,) to calculate Type Il error
Example 1: H, =25 0=2.4, n=30, H,=25.75
P(Type W error | = 25.750) = P{we accept Hy|p = 25.750)
pdf if H, true = P(V = 25718 p = 25.750)
pdf for Ha ) P( ¥ 25’.]‘5 - 25.718 '2_'\.]'5 }
L 2.4/ 30 2.4/%30
Samiling NZ = ~007) = 04721

Power=1-
= 1- Probability of
Type Il error

7]

B=P(Type, || ffor) 5 0 4721

NOTES:

Calculating Type Il error

Slide 38 Calculating Type II error

Must specify H, for Type Il error
Example 2: H, = 25 0=2.4, n=30, H,=26.8

NOTES:

pdf if H, true
pdf for H,

- i
@ 3
5

e

Rt W,

FIGLAE 6.4 3

Alpha level
B=P(Type Il error) = 0.0068

Power=(1-B) & Power curves

Slide 39 Power=(1-p) & Power curves

Larsen & Marx (2001, P_385). 2-tailed Rower curves

NOTES:

‘relative power efficiency’ 1s based on relative

Method B 1s more powerful than Method A The
sample sizes needed to produce similar power

Page 13 of 25




Class 25; Sleuth Ch 23 Designs

Display 23.4 Slide 40

Choosing sample sizes for comparing two proportions or odds

(1) Specify the expected “contral” proportion
“Coutrol” proportion = =

@‘i;:cuf}' n practicalk
or an adds mtio B

ignificant difference. either with a proportion my

culate the intermedi hues below NOTES .

Meaningfully different alternatives What size n to achieve a
Oads e practically significant
or - ® difference T, or odds ratio
R
o= ( R
and

@Dcmnun_: the sample size for each group so that the 100{1-a 1% confidence
mterval for the odds mnto will net stmulaneowsly melude both 1 and B

Ay = 51
[logf R |

.y
acll-ng)  maflemy) ¥

Slide 41 Ionannidis on power

Open access, Ireely avaitable saline

NOTES:

Sohn B, K. Icarsidia

Modaling for False

Slide 42 Ionannidis on power

lonannidis on power

PPV=positive predictive value, P(Study’s inference is True)
R=True relationships/Total Relationships

C= Number of relationships being probed in the field

NOTES:

Table 1. Research Findings and True Relationships

Research True Relationship
Finding Yes No Toral
Yies €01 = [RAR 4+ 1) iR+ 1) el 4t = [SIVEA + 1)
Ho SRR+ 1) i1 =R 1) =1z o SRR+ 1)
Tatsl cRAR i+ 1) €

7"': F F f..s

Page 14 of 25
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lonnidas on ‘bias,’ should be fraud

Not the accepted meaning of bias
Bias Selective or distorted reporiing is a
First, let us define bias as the typical form of such bias. We may
combination of various design, data, ~ assume that u does not depend on
analysis, and presentation factors thar  Whether a true relationship exists
tend to produce research findings or not. This is not an unreasonable
when they should not be produced. assumption, since typically it is
Let  be the proportion of probed impossible to know which relationships
analyses that would not have been are indeed true. In the presence of bias
“research findings,” but nevertheless (Table 2), one gets PPV = ([1 -BIR +
end up presented and reparted as upR)/(R+ = BR+u - won+ upR), and
such, hecause of bias. Bias should not PPV decreases with increasing w, unless
be confused with chance variability 1-PB=a ie,1-p<0.05for most
that causes some findings to be false by situations. Thus, with increasing bias,
chance even though the study design,  the chances that a research finding
data, analysis, and presentation are is true diminish considerably. This is
perfect. Bias can entail manipulation shown for different levels of power and
in the analysis or reporting of findings. for different pre-study odds in Fieure 1.

Slide 43 Ionnidas on ‘bias,’ should be
fraud

NOTES:

Bias in statistics: The difference between the expected value and the true value of a
¢f., unbiased estimator

eCorollary 1: The smaller the study’s i Power " 2
sample size, the less likely the results [ . |-
are to be true. Low sample size e [=
produces tests with low power (Large !
clinical trials more likely to produce s T e
true results) Power = .5

eCorollary 2: The smaller the effect size, H i f -
the less likely the result is true 1 -
eCorollary 3: The greater the number of
studies, the less likely the result is to
be true
eCorollary 4: The greater the ‘flexibility’ . | =
in analysis, the less likely the result i [m
eCorollary 5: The greater the financial } - T S T e o
incentive, the less likely a result is to beBias. ( 05_t0 8) . N

““Power,.="8

true

eCorollary 6: The hotter the scientific
field, the less likely the result is to be
true

Slide 44

NOTES:

lonnades’ recommendations

Slide 45 Ionnades’ recommendations

e Perform studies only if the sample sizes are
large enough to ensure high power

® Register the study, design and hypotheses in
advance to avoid the identification of significant
results that are spurious

® Design experiments and surveys to test
hypotheses with high initial probabilities of being
true
» Often relationships assumed to be true in a field are not
true.
» Test established foundations of a field

NOTES:

Page 15 of 25
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Retrospective power analyses

Slide 46 Retrospective power analyses

Hoenig & Heisey (2001): The abuse of power

® The dilemma of the nonrejected null hypothesis: what
should we do?

e 19 applied journals, including Ecology, required post-
hoc power calculations

® Winer et al. (1991) & Zar (1996) recommend post-hoc
power tests

e Dayton (1998): reverse the burden of proof: How big
could the effect have been and still have been missed?
The no-impact null.

® Alternative recommended by Hoenig & Heisey (2001):
interpret confidence intervals & discuss sample size
issues

NOTES:

Retrospective power analyses

Slide 47 Retrospective power analyses

Hoenig & Heisey (2001): The abuse of power (2 of 2)
® Observed power, available in SPSS
» Case Study 2.1 Bumpus’s sparrows
e Student’s test found a 0.01 inch difference but

an independent samples t test found a 2-sided P
value of 0.08

® UNIANOVA can estimate the observed power
for this design

¥
R
=
-
=
-

NOTES:

Case Study 2.1

Slide 48 Case Study 2.1

Observed power available in GLM Univariate, but don’t use!

t-test for Equality of Means
95% Confidence
Independent Samples Test Interval of the

Mean Std. Error Difference

t df  Sig. (2tailed) Difference Difference  Lower  Upper
Humerus length  Equal variances
{in1000) e A 57 081 -10.083 5674 21446 1219

Dependent Variable: Humerus length (in.x1000)  Parameter Estimates

95% Confidence Inteval  opgerved

Parameter B Std. Error t Sig.  LowerBound UpperBound  powef

Intercept 738000 3619 203.920 000 730.753 745.247 1.000

lgroup=1] 10083 5674 1777 081 -21.446 1279 416

[group=2] o° a

. Computed using alpha = .05
b. This parameter is set to zero because it is redundant.

With the observed standard error, the probability of
Type |l error is 58.4% (1-Power) against an
alternate hypothesis of 0.01 inch larger humerus in
those that survived

NOTES:
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What’s wrong with power analysis?

Hoenig & Heisey (2001} .

eObserved power is determined
completely by the p value and
adds nothing more

elf Z = alpha for a 1-tailed test,
then the observed power is 0.5

If the difference was exactly 10.083 inches,
and the difference was symmetric, then
there would be a 0.5 probability of rejecting
the null hypothesis at a=0.05

Dependent Variable: Humerus length (in.x1000)

Parameter Estimates ey

95% Confidence Ineval  ParfalEta  Noncent  Obsorved
Paameter B S Error Sig.  LowerBound UpperBound Squared  Parameter  Powel

Intercept 738.000 3619 203.920 000 730.753 745.247 999 203.920 1.000
foroup=1] 10083 574 777 081 21448 1279 052 1 416
lgroup=2] 0° .

a.Computed using alpha = .05

Slide 49 What’s wrong with power
analysis?

NOTES:

What’s wrong with power analysis?

Hoenig & Heisey (2001): The power approach paradox

e®Many authors argue
> that the higher the observed power, the greater the evidence
in favor of the null hypothesis. =
» Conversely, low power offers only weak support for the null .
hypothesis
» Hoenig & Heisey: “This is easily shown to be nonsense.”
eImagine 2 experiments.
> In experiment 1, the p value is 0.08 which offers only weak
evidence against the null. The power is 0.42
> In experiment 2, the p value is 0.4 which offers much
stronger evidence that the null hypothesis is true against
similar alternative hypotheses.
> However, the observed power in the 2nd experiment is only
0.1, which would indicate weaker evidence in favor of the
truth of the null hypothesis
e“Higher observed power does not imply stronger
evidence for a null hypothesis that is not
rejected.”

Slide S0 What’s wrong with power
analysis?

NOTES:

Detectable effect size: also bad

Slide 51 Detectable effect size: also bad

Hoenig & Heisey (2001)

e Those that argue for post hoc power analysis require an answer to
the question, “What is the effect size required to achieve a power
of 90%7?”

» This would be the detectable effect size

® The closer the detectable effect size is to zero, the stronger the
evidence is taken to be for the null hypothesis

® |magine two experiments with the same effect size & same
sample size, but Z, > Z,, p, < p, which implies 0, < 0,

e The detectable effect size will be smaller in the 1st experiment

e . leading to the nonsensical conclusion that the 1st experiment
with the lower p value (e.g, 0.06) provides stronger evidence for
the null hypothesis being true than the 2nd experiment with the
higher p value (e.g, 0.4)

NOTES:
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Alternatives to post-hoc power
analyses

Slide 52 Alternatives to post-hoc power
analyses

Hoenig & Heisey (2001)
Use confidence intervals: once the confidence interval is
calculated, power analysis provides no further insights.

® “We believe that the central focus of data analysis
should be to find which parameter values are supported
by the data and which are not.”

® Bayesian posterior probabilities offer a solution to these
problems

e Statistics classes should place more emphasis on
confidence intervals and less on hypothesis testing and
p values
» Researchers interpret frequentist Cl's as Bayesian credibility
regions: so what?

NOTES:

BACI designs

Slide 53 BACI designs

Before-After-Control-Impact design

eDescribed by Green (1979)

oGreen argued that one could
use an Optimal impact study *
design: use a 2-way ANOVA *
with the interaction effect .
being the key test statistic I—

eoHurlbert (1984) attacked this ==
view

oPaul Murtaugh has a recent
critique of recent BACI model
(fail to assess serial
correlation effects)

TARGLNOR D IS =
=

NOTES:

BACI designs criticized

Slide 54 BACI designs criticized

If 1 treatment & 1 control area
® Green (1979) use a site x time interaction term
® Hurlbert (1984) assumes that 2 sites remain parallel

e Stewart-Oaten & Murdoch: Measure the differences between sites
multiple times before and after impact
> A form of repeated measures design

o Murtaugh (Ecology 2000, 2002):
» BACI designs ignore serial correlation
> Murtaugh: P (Type | error) =20% with real data with positive serial
correlation
» Adjusting for serial correlation produces tests with little power
> Solution: just plot the data and avoid significance tests
e Murtaugh (2003): No p values are better than incorrect ones.
Don’t use inferential statistics if the design is bad, just report the
data

NOTES:
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Fisher’s alpha increasing cyclically

No evident effect of the outfall
Model estimates a 2% Nearfield decline in Fisher’s alpha in
2001 & 2002, but with 95% CI of 0.96 to 1.09

No evidence to
reject the null
hypothesis of no

Estimated Means of In (Fisher’s alpha)
change due to
the outfall

[Near- Far] * [pre-

\/ Outfall| =™ post] Interaction,
(p=0.47)

Ln (Fisher’s alpha)

2 1994 | 1s%6 | 1938 | 2000 | 2002
1993 1995 1997 1999 2001

Y= A 7-year cycle &
long-term
increase?

Slide 55 Fisher’s alpha increasing
cyclically

NOTES:

No indication of an outfall effect on
Fisher’s alpha in the Farfield

Fisher’s alpha increasing baywide, with large among-station
variability

Slide 56 No indication of an outfall effect
on Fisher’s alpha in the Farfield

T I \.\
*“Qutfall

A nested design was used to remove residual
station-to-station and year-to-year variability
from the error mean square

NOTES:

Species Evenness (J’):

Slide 57 Species Evenness (J’):

J’: How evenly distributed are species in a sample

Pielou's Species E )

Nearfield

° Farfied

Nearteld v

1962 | 194 | 1586 | 1988 | 2000 | 2
1093 1ee5 1997 1989 2001

Year
0.03 increase
estimated between
Nearfield & Farfield J' ~N T E n ¢
in 2001 & 2002

030

Estimated Means
H 2 g H H
R
g p—
—
—
3 | ———
3
—— . —
———
g

2000

NOTES:
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Slide 58 Pielou’s Evenness

Pielou’s Evenness

A 5% increase in Farfield relative to Nearfield in 2001 & 2002,
Effect, indicated with green arrowheads, tested with the Near

-Far x Pre-Post Outfall Interaction term

Pielou's Species Evenness (J') Tots of Botwson Subjots Efocts

”

NOTES:

Estimated Means.

My model is a 2-factor mixed model
Nested ANOVA: Pre vs. Post
nested within Years, Near vs. Far
nested within station effects

Slide 59 High variability in Pielou’s

High variability in Pielou’s Species

Evenness (J’)

Species Evenness (J’)

Especially at sandy NF-17
Significant

g effect size
!‘/from ANOVA
; 1579 Molgula

manhattensis in
1 sample (64%
of the Total)

Station
o-s A —— NFI7
A
A

NOTES:

Slide 60 Ragwort example

Ragwort example

Display 23.6

A fishbone diagram of factors that may affect ragwort biomass.

COMPETITION BIOLOGICAL CONTROL

CLIMATE

NOTES:
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Slide 61 Ragwort example

Ragwort example

2,451 blocks required: an impossibility

Diplay 205

eSolutions (Sleuth p 687)
eDecrease the level of

S NOTES:

confidence

eincrease the size of the
practical significance

eConsider a repeated measu
crosssover design
» Often not an option

» See Appendix for crossover desi
issues

e®Reduce the residual varianc

» Blocking
» Adding covariates

1o
Practically Siguificass Diflervacs (FSD)

Slide 62

Tapie 1. Potential sources of confusion in an experiment

and means for minimizing their effect
Features of an experimental
design that reduce or

Source of confusion eliminate confusion
1. Temporal change Control treaiments
2. Procedure elfects Control treaiments NOTES .
3. Expenimenter bins Randomired assignment of .
experimental units 1o
IreAuments

Randomization in conduct
of other procedures
“Blind” provedures*

4 E ki of

ated vanability

(random crror) Hurlbert (1 984) on

Inital or inherent Replication of treaiments

vaniabilily among Interspersion of treatments exper mental
experimental units Concomitant observations
e e T S e, des gn
of
7. Demenic intrusion Eiernal vigilance, exorcism,

human sacrifives, cic.

* Usually cmployed only where measurement involves a
large subgective clement,

t Nondemonic intrusion is defined as the impingement of
chance evenis on an experiment in Progress.

Slide 63 Random or systematic?

Random or systematic?
Hurlbert (1984) & Underwood argue for systematic sampling

designs to avoid aggregation which might occur by chance

NOTES:

ABBA|[ABCD
cplpc|lpasec
cpbc||lcDAB
ABlBA[[BCDA

I ]

Fi.3, E i T four treat-
ments, each replicated four times, that can result from use of
1) rand.

Schematic reperaeseation. of vasins scorprably TENCIE omi. } d block
moden (A) o imserspersing tbe replicaies (bonest of vwo wreae- design, (11) Latin square design,

menis (xhadnd, usahaded) asd vanaus says (B) in whech the
principie of inieTypersion cas be vioiod
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Pseudoreplication

Slide 64 Pseudoreplication

48% of recently published papers suffered from
pseudoreplication

A SIMPLE PSEUDOREPLICATION

oFor editors

» Insist that the layout be provided nEERY R RN
» Determine whether there is true B SACRIFICIAL PSEUDOREPLICATION
replication | |

» Analyze allocation of experimental
units to treatments and sample
locations

» Insist that statistical analysis be
specified in detail

» Disallow the use of inferential
statistics when they are being
misapplied

» Be liberal in accepting papers that
do not use inferential statistics

LT

B

NOTES:

Simple Stratified Systematic
Random Random Sampling
Sampling Sampling

Figura 1.2 Ci of simphe random sampling. sirabfied random samp! g9 and syslemabc

sampling for eclangular sludy negion, with chosen plots indicated by

Slide 65

NOTES:

Adaptive sampling methods

Slide 66 Adaptive sampling methods

From Manly (in p_reparation)
B

eChoose a random set of quadrats et |
eSample the population of interest
eSet a threshhold abundance (e.g., 1 ¥
individual per quadrat) e
eSample the adjacent quadrats ¥
eContinue sampling & identify discrete
blocks of contiguous samples )

» Use formulae that account for whether the % Tl !
sample was part of the original sample or part
of groups later created

®This approach can produce more
precise estimates of the abundance of
rare populations

NOTES:
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BACI designs

Slide 67 BACI designs

Before-After-Control-Impact design

eDescribed by Green (1979)
oGreen argued that one could

use an Optimal impact study * iz 5. -,
design: use a 2-way ANOVA "z Wi R oW b
with the interaction effect  *&=&aiu: oo
being the key test statistic IR—— | S T R
eHurlbert (1984) attacked this == HEE LI
view 2 i I
eoPaul Murtaugh has a recent f iE I
critique of recent BACI model I
(fail to assess serial /= : i
correlation effects) T v e 4 o™ i o i

NOTES:

BACI designs criticized

Slide 68 BACI designs criticized

If 1 treatment & 1 control area
® Green (1979) use a site x time interaction term
e Hurlbert (1984) assumes that 2 sites remain parallel

e Stewart-Oaten & Murdoch: Measure the differences between sites
multiple times before and after impact
> A form of repeated measures design

e Murtaugh (Ecology 2000, 2002):
» BACI designs ignore serial correlation
> Murtaugh: P (Type | error) =20% with real data with positive serial
correlation
» Adjusting for serial correlation produces tests with little power
> Solution: just plot the data and avoid significance tests

e Murtaugh (2003): No p values are better than incorrect ones.
Don’t use inferential statistics if the design is bad, just report the
data

NOTES:

ENYIRONMENTAL IMPACT ASSESSMENT:
“PSEUDOREPLICATION" IN TIMEY

ALLan STEWART-ChTES AnD WiLLias W, Muzpocs
Department of Rioogieal Sciences, Umiverny of Califorma, Sama Barfars. California #1106 US4

AnD

KomH R, Parkes
Marine Review Committor, $31 Encinitas Boulevard, Encosar, California $024 U354

Abstracr. A recent moncgragh by Hurlben raised seversl problems concerming the sppropriate
dexign of sampling programs 1o & the Enpact ugoe the atwndance of beotopical populations of,
for example, the Sischarge of effluents in%0 s &ustic ecosyviem a1 3 unge point. Ky to the resobution
of thsese issues is the comest identification of the watitical parsmeter of nterest, which i the mean

" procew” that prod bunc. thes than the scvual abundance
f1self, We describe an appropriste sampling schemne desigand 1o detent the effect of the discharpe upos
thix undertying mean. Although not guarantoed to be universally spplicable. the design shoukd meet
Hurfher's objeetions in mamy cases. Detection of the effect of the dincharge i achieved by testing
whether the difference between abusdasces at & conbiol wilé a6 an impsct wie changes cace the
discharge begn. This requires taking samples. replicated in time, Meforr the dncharge bepas and
After it has begun, a1 both the Control and Impact sites (henoe this is called 8 BACT desiga). Care
needs 1o be taken in chooing & coatrl e 3 That i i sufciemily far from the dichargs 10 be rgely
beyond its influence, yet close encugh 1hat it i inSuenced by the me range of matural phenomena
fe-g. weathes) that revult in long-serm changes in the biologsal populations. The deaign i BoL Appeo-
prisi where loca eveats cause populations st Coirol 4nd lrspact sitcs o bave difkrens loog-term

of BACI, partscularly addinvity (and 0 achieve it) and
mimitiring: impact dssessment: independence; pollitants. prwer plants
replicution; seril cormelation: satiical FROAOrMATo; RATICE

A e

Slide 69

NOTES:

Page 23 of 25




Class 25; Sleuth Ch 23 Designs

A 1988 AMALYZING [MPACT

e pards e
ne differeinir
D e i et v b Sitingubihd

Slide 70

NOTES:

Paired Intervention Analysis in Ecology

Paul A. MURTAUGH

The paired watershed experiments of Likens and coworkers in the Hubbard Brook
Experimental Forest are examples of & classical design in ecology, in which a response in
a manipulated unit is compared both to the response in the same unit before manipulation
and to the response in an adjacent reference unit that remains undisturbed. Early propo-
nents of this design did not sempt statistical analysis of their results but, more recently,
before-afier-control-impact analysis and randomized tntervention analysis have been wsed
by ecologists 1o draw statistical inferences from such data. These methods are simply two-
sample comparisons (before vi. after) of berween-unit differences, with significant results
often interpreted as evidence for an effect of the intervention. This approach ignores van-
ation caused by differences between units in the trajectories of the response through time,

d it does not take int t possible serial of emors. C q the null
hypothesis may be rejected mlx'h 100 ofien. | develop a new, two-stage analysis method
that addresses these by ing for serial and using half-seri

means 1o assess lemporal variation. Unlike paired imervention analysis, the resulting test

has close 1o the nominal level when the time course of the response is allowed to vary

between units, but its power s extremely limited due 1o the lack of true replication in the

design.

Key Words:  Beft i l-impact design; impact : En=
E 1] Randomized i jon analysis; Senal comrelation; Two-stage

Slide 71

NOTES:

CTION RATES OF PAIRED INTERVENTION ANALYSIS

Pavt A MURTAUGH

Dapartmant o Oregon 07321 US4

Before—After-Control-Impact (BACT) analysis and randomized intervention
ysis (RIA) are commonly applied to time series of response wrements obtained
from two ecological units, one of which is subjected to an interventios e intermediate
time. Positive results from ses are interpreted as evide
ingful hetween wrreitionwnd the aonss. Applisd b 154 paits oEatsl
al time series. RIA done at the 5% level rejected the hypothesis of no association
20% of the time when both units were in fact undisturbed. and 30% of the time when cne
of the two units had received an intervention. Corvection for first-order serial autocorrelation
eries of between-unit differences reduced these rejection frequencies to 15%
tively, A mo-.h;e analysie method that attempts 10 adjust for temporal

o means failed to find an association in any of the y.m.
|l!\'||\.= of hs 1 only 14-15% of the

-

limited power. It may be that r|.1- |:=\I strategy for interpreting data from BACT designs is
to rely on graphical presentation, expert judgment, and common sense, rather than P values
dertvad from hypothesis tests of questionable validity

Slide 72

NOTES:
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Slide 73

Comments —

ON REJECTION RATES OF PAIRED .
INTERVENTION ANALYSIS: REPLY NOTES .

ON REIECTION RATES OF
PAIRED INTERVENTION
ANALYSIS: COMMENT
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