Class 3: Chapter 2

Class 3, Chapter 2:
Inferences using t-
distributions

Slide 1 Class 3, Chapter 2: Inferences
using t-distributions

2/4/09 W

NOTES:

HW 3 for Mon 2/9/09 9:50

Slide 2 HW 3 for Mon 2/9/09 9:50

Submit as Myname-HW3.doc (or *.rtf)

® Finish Chapter 2 and start on Chapter 3 “A
closer look at assumptions”
» Read Sterne & Smith (2001) “Sifting the evidence”
[Discusses p values & significance testing]
e Conceptual exercises, Chapter 2
» Post >1 message & >1 reply to a message on the
Blackboard Vista 4 discussion section.
e Chapter 2 computation problems (SPSS
sdta on Blackboard Vista 4)
» 2.21Bumpus’s data: weights of Bumpus’s birds

NOTES:

HW 4 due Thus 2/12/09 11 am

Slide 3 HW 4 due Thus 2/12/09 11 am

Submit as Myname-HW4.doc (or *.rtf)

e Finish Ch 3 for Weds' class
» Chapter 3: A closer look at assumptions
» Read
= Hayek & Buzas (1997, on sampling)
= Hurlbert (1984) on Pseudoreplication
= Post one comment and one reply to issues raised in
Hayek & Buzas or Hurlbert (1984)
e Chapter 3 problem due Thus
» 3.28 Pollen removal

NOTES:
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Fisher’s major contribution to
statistics: randomization

Slide 4 Fisher’s major contribution to
statistics: randomization

http://bmj.com/cgi/content/full/322/7280/0

“The modern solution was first

propounded by R. A. Fisher. We NOTES
have already seen throughout this
work that Fisher's contributions to
statistical theory were remarkable
and far-ranging. Nevertheless, it is
probably no exaggeration to say
that his advocacy of randomization
in experimental design was the most
important and the most influential of
his many achievements in statistics.”
Kendall & Stuart 1977
.
Slide 5
Display 1.5 Statistcal infarances permitted by study designs -
Alloeation of Units to Groups
By Randomization Not by Randomization
5 | Random sawpies are
welected, x .
: Zeoimct NOTES:
3 H are then rundasly
% H asigned io differens
w % [ sreament growps. it
z i ]l aonsoaoano
H M i
] af sty Collectio
; § [ Al alible vt fom
2 [ i are shen distinct growps are
= [ roadomly assigned  } examined
z a for Prectment growps
*n

Statistical inferences and chance
mechanisms

Slide 6 Statistical inferences and chance
mechanisms

® An inference is a conclusion that patterns
in the data are present in some broader
context

o A statistical inference is an inference
justified by a probability model linking the
data to the broader context

EEOS611

NOTES:
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Randomization

From Kendall & Stuart’s ‘Advanced Theory of
Statistics’
® The principle of randomization is simply
stated: Whenever experimental units are
allocated to factor-combinations in an
experiment, this should be done by a random
process using equal probabilities.

e Even if the relationship of the dependent variable
with some unsuspected causal factor is not
recognized until after the experiment, the validity
of the inferences will not be impaired, provided
that the factor's influence was “randomized out”
of the experiment.

EEOS611

Slide 7 Randomization

NOTES:

Kendall & Stuart on Experiments

Three classes of variables

® |n any experiment the factors influencing
the dependent variable are, explicitly or
implicitly, divided by the experimenter into
three classes:
= Those incorporated into the structure of the

experiment

= Those “randomized out” of the experiment
= Those neither incorporated nor randomized out

e Classes 1 & 2 require positive action,
affecting the layout of the experiment, or
the randomization procedure employed. A
factor may find its way into class (3) by
simply being overlooked.

EEOS611

Slide 8 Kendall & Stuart on Experiments

NOTES:

What makes a good experimenter?

Kendall & Stuart (1977)

“A substantial part of the skill of the
experimenter lies in his choice of factors to be
randomized out of the experiment. If he is
careful, he will randomize out all the factors
which are suspected of being causally important
but which are not actually part of the
experimental procedure. But every experimenter
necessarily neglects some conceivably causal
factors; if this were not so, the randomization
procedure required would be impossibly
complicated. Thus the choice of what factors to
be randomized out is essentially a matter of
judagement.”

Slide 9 What makes a good experimenter?

NOTES:
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Experimental design should include:

Hurlbert (1984), posted on Blackboard/Vista4

The nature of the experimental units to be
employed

The number and kinds of treatments and the
properties of the responses that will be
measured.

Specification of how the treatments will be
assigned to the available experimental units
(replicates)

The physical arrangement of the experimental
units, (and often) the temporal sequence in which
treatments are applied to and measurements
made on the different experimental units.’

EEOS611

Slide 10 Experimental design should
include:

NOTES:

Randomized Experiments vs.
Observational Studies

Randomized experiment: a chance mechanism used to
assign subject to groups

Observational study: group status beyond the control of
the investigator

“Statistical inferences of cause-and-effect
relationships can be drawn from randomized
experiments, but not from observational studies”

“A confounding variable is related both to group
membership and to the outcome. Its presence makes it
hard to establish the outcome as being a direct
consequence of group membership.” (Male experience)

EEOS611

Slide 11 Randomized Experiments vs.
Observational Studies

NOTES:

Sample surveys vs. experiments

v

v

Kendall & Stuart's “The Advanced theory of statistics”

The distinction betwee(agt-%)design of experiments
and the design of sample surveys is fairly clear-cut,
and may be expressed by saying that

In surveys we make observations on a sample taken
from a finite population of individuals, whereas in
experiments we make observations which are in
principle generated by a hypothetical infinite
population, in exactly the same way that the tosses of
a coin are.

Of course, we may sometimes experiment on the
members of a sample resulting from a survey, or even
make a sample survey of the results of an (extensive)
experiment, but the essential distinction between the two

fields should be clear.
EEOS611

Slide 12 Sample surveys vs. experiments

NOTES:
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Do observational studies have
value?

e Establishing causation not always
the goal of the study

e Establishing causation can be done
in other ways.

e Analysis of observational data may
lend evidence toward causal
theories and suggest the direction
for further research.

EEOS611

Slide 13 Do observational studies have
value?

NOTES:

Inferences to populations

e Inferences to populations can be drawn from random

sampling studies, but not otherwise
> Simple random sampling (SRS): A simple random sample of

size n from a population is a subset of the population consisting of
n members selected in such a way that every subset of size n is
afforded the same chance of being selected.

e Random sampling ensures that all subpopulations are
represented in the sample in roughly the same mix as in
the overall population.

e Statistical inference procedures incorporate measures of
uncertainty that describe that chance.

EEOS611

Slide 14 Inferences to populations

NOTES:

Selecting a random sample

The type of sampling can dictate the analysis used.

Simple random sampling

Stratified random sampling

Multilevel sampling (e.g., Regions, Lakes, areas within lakes)
Systematic sampling

» Quadrat samples
» Line transect samples: see Hayek & Buzas (1996)

o Random cluster sampling (selecting blocks or grids at random)

» Lakes: Can adjust the probability of different types of lakes being sampled
® Variable probability sampling

» EMAP sampling of estuaries
® Adaptive sampling

» Adaptive cluster sampling (Thompson 1990)

» Randomized ‘play the winner strategies’ (Wei 1988, Biometrika 75: 603-

606

Slide 15 Selecting a random sample

NOTES:
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Slide 16

NOTES:

Simple Stratified Systematic
Random Randaom Sampling
Sampling Sampling

sempling, s abfied fandom samping and sysemasc

Manly /n Press

Slide 17 EMAP sampling, regular grid

EMAP sampling, regular grid

1918 samples taken over 4 years

Virginian Province Sampling Sites

NOTES:

EEOS611

Slide 18 EMAP probability-based
EMAP probability-based sampling sampling

Entire area divided into hexagons, with 1 sample per
hexagon

EPMAP SAMPLING GRID, — s e 4 iy

'I-‘. R NOTES:

EEOS611
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MA Bay sampling

Random locations, but many rocky stations deleted

WTFLA Outfall Maeitaring Sampling Statisra
=
v L

Slide 19 MA Bay sampling

NOTES:

Boston Harbor sampling

8 stations sampled since 1991: not selected randomly

_-T.l- =

T2 A
: TR
g § No statistical
o a7 = inferences
- possible in a

strict sense.

EEOS611

Slide 20 Boston Harbor sampling

NOTES:

Adaptive cluster sampling

Thompson (1990), estimate density with lower

variance
)
i
| You can’t
i 7 C e | analyze
Y these
w1 | samples as
o =4 | If they were
I o I A taken
o randomly

Manly In Press .. et v

Slide 21 Adaptive cluster sampling

NOTES:
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Sampling designs in clinical trials

Solution to the Arrowsmith problem

Biamereika (1985), 78, 3, pp. 8086
Frinted in Cireat Britain

Exact two-sample permutation tests based on the randomized
play-the-winner rule

By L. 1. WEI
Department of Biastatistics, University of Michigan, Ann Arbor, Michigan 48109.2029, USA.

SUMMARY

In comparing two treatments in a clinical trial, the randomized play-the-winner rule tends to
assign more study subjects 1o the better treatment. 1t is applicable when patients have delayed

EEOS611

Slide 22 Sampling designs in clinical trials

NOTES:

Zelen’s play the winner rule

If the treatment works, continue using it

To meet the ethical requirement, Zelen (1969) introduced the play-the-winner rule with
dichotomous responses into clinical trials. This rule can be described as follows: a success on a
particular treatment generates a future trial on the same treatment with a new patient; a failure
on a treatment generates 3 future trial on the aliernate treatment. The play-the-winner rule can
be implemented by placing in an urn balls marked with A whenever a success is obtained with
treatment A o a failure with treatment B Similarly balls marked with B are placed in the urn
whenever a success is obtained with treatment B or a failure with treatment A. When a new
patient enters the trial, the treatment assignment is determined by drawing a ball randomly from
the urn without replacement; if the um is empty, then the assignment is determined by the tossing
of a fair coin. IT the time to observe the response of patient to treatment is longer than the time
between successive patient entries, the urn is usually empty and the play-the-winner rule has little
value. When the response of the nth patient to treatment is known before the (n+ 1)st patient
enters the trial, the play-the-winner rule can be modified so that after each success we continue
1o use the same treatment and after each failure we switch to the other treatment. Zelen (1969)

EEOS611

Slide 23 Zelen’s play the winner rule

NOTES:

Wei’s (1988) randomized play the
winner (RPW)

3, SEGNIFICANCE TESTS 1N THE EXTRACORMONEAL MEMBBANE GXTGENATION STUDY

Rircently the (1, 1) desiga was utitized = an interesting peospective controlled randossized
study of the wse of eatracorpoceal membeane oaypenation 10 treai newboms with respiraiory
Tuibure {Bartlest ot al., 1985; Cornell, Landeaberger & Banlett 1985}, The comtrol treatment was
the conventivel therapy and historically had probability of death of at least 0-8. The rosponses,
rither death or beng recovery, from s patieats could be obtained within a few days after trostment
This seemmed 10 be am ideal sustion 1 use an sdapeive design in allocating patients 10 treatment
d the fiest haby 1o the mew treatment and the Infant
w signed to conventional Userapy, died. Then, ia
part by chance and in part because of this failure and the early success of ihe new procedure,
the next ten babies were all assigned 12 the new trvatmest and all survived. The irial was then
terminated with the con, \he surgical .
using some information from the kistoeical cantrols
cusslon on the sdaptive desigm used in the trial amang medi
(Pancth & Wallensiein. 1985; Ware & Epstein, 1985}

12 babies: 1) New treatment (NT): Survived; 2) Conventional
treatment-Died; 3-12) NT-S
p=0.051

Table 1. The exact permutational disiribution pri$,;= 5) for the gcmo study

groups. For this study, the nrw (1,
survived. However, the second bul

udy has stimulated imeresting dis-
Imvesthgaton aed biostatiaicians

s=6 =7 =8 =9 =10 =11
rEW (1,10 05 0-39% 0-296 0203 o2 0051
Complete randomization [ 0275 0114 0-033 0006 0001

Slide 24 Wei’s (1988) randomized play the
winner (RPW)

NOTES:
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Slide 25 Statistical inference

Statistical inference

& Neyman-Pearson Hypothesis testing

NOTES:

A probability model for
randomized experiments

® The creativity study is an example
® An additive model: Y*=Y+d

Display 1.6 1o
Ilustration of o randomized experiment with two trestment groups

Data

@D Teethtus 1 T :
@ 'rré':ml?mz "’_ _LLLL_
——S611

Subjects
Recruited

-

Slide 26 A probability model for
randomized experiments

NOTES:

Display 1.5 Statisbcal infarancos permitted by study desigrs

Alloeation of Units to Groups

By Randomization Nt by Randomization
TS 'bfo)f‘?‘f‘f:; NN BN
A random sample i f4 B Random smples are
§ [ seleceed from one selected from exising
2 population: units dlistimet poprlmtiont.
2 B are then randonsly
% H assigned 1o differns
® = [ irearment groeps 2
et Boecomreoeooe
k]
£
B 1 A poup oty Coltections of
F [l s is found: available units from
% 3 H umivsare then distinct groups are
= [ roadomly assigned ¥ || examined
z ; o freciment groups
- | — 1

Slide 27

NOTES:
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Null & alternate hypotheses
Page 10

® “Is there a treatment effect?” must be
translated into a model that can be tested
statistically Y*=Y+d, where 9 is the treatment
effect

® Create a test statistic
» Assume a creativity parameter &
= 5=0 is the null hypothesis
= 5#0 is the alternate hypothesis
» Randomization distribution of the test statistic
» The p-value of the test, derived from the
randomization assumption

EEOS611

Slide 28 Null & alternate hypotheses

NOTES:

Randomization distribution
Can be done with Matlab & R, not SPSS

Display 1.5 13

A Bistogram af differemces betworn grosp averages, frem 1,000
randomirations of the creativity study dats

Manly’s book is
SUPERB!

L) |
M PR P T T JE A P

L ‘ I+
|| | | 414
W 0 10 420 4
Difference between Sample Averages

Slide 29 Randomization distribution

NOTES:

Computing p values using
randomization & Monte Carlo
trials

e All possible permutations: not feasible for
many studies

® Set the number of Monte Carlo simulations
at about 4*1/(desired precision of the p
value)
» See: How many Monte Carlo Simulations Should
You Run? See Gallagher's HO13-MCTRIALS.pdf

® Or, approximate the randomization
distribution with a normal or t distribution

Slide 30 Computing p values using
randomization & Monte Carlo trials

NOTES:
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Measuring uncertainty in
observational studies

Display 1.9 p- 14

Iustration of a random sampling study with two populations

I,
Random y I ff!ﬁ

Sampling > AH =
AT

ol

EEOS611

Slide 31 Measuring uncertainty in
observational studies

NOTES:

Related issues

Relative frequency histograms
Stem and leaf diagrams: poor in SPSS
Box plots, box-and-whisker plot

Standard statistical terminology

» A parameter, a feature of a probability model.
Parameters indicated by Greek letters.

» Statistic: any quantity that can be calculated
from the observed data.
= Mean in statistical sleuth is over the entire population:

it is a parameter

= Standard deviation

» Experimental units: the things to which
treatments are applied

EEOS611

Slide 32 Related issues

NOTES:

Sleuth Chapter 2

Inference using t-distributions

Slide 33 Sleuth Chapter 2

NOTES:

Page 11 of 20




Class 3: Chapter 2

Weiner’s account of Bumpus data

1994. The beak of the finch: a story of evolution in our
time. Alfred A. Knopf, New York.

oEnglish sparrows had been
introduced in New York’s Central
Park in 1851. An eccentric bird
lover wanted to import every one of
the birds in Shakespeare’s plays to
the United States. “So the birds
were lying in the snow that morning
in part because Shakespeare had

written, ‘There is a special
providence in the fall of a sparrow.’
eLast day of January 1898, huge

storm, large number of English
sparrows lay dead

BEAK
FINon

EEOS611

Slide 34 Weiner’s account of Bumpus data

NOTES:

Bumpus sparrow data

Stem-and-leaf plot

Display 2.1 Humerus lengths (inches) of adult male house sparrows, 24 that perished
and 35 that survived in a winter storm

9 |65
Perished 2’2 Survived
Average: 7279 9 |es| 7 Average: 7380
SD: 0235 69 SD: L0198
= M 932 70| 30 mo2

3 5
96600 | 72| 13368889
988761 |73 | 0033569
543 |74 111139
422 |75 | 12256
5176|679
0

T80

' Legend: |68 7 represents 0:687 inch

Slide 35 Bumpus sparrow data

NOTES:

Bumpus’s sparrow data
From Weiner (1994,p. 227-228) “The Beak of the Finch”

eln the early 1970s, Peter Grant
reanalyzed Bumpus’s data, “He
concluded that Bumpus had actually
seen not one but two kinds of natural
slection. For the female sparrows the
storm was stabilizing. The event killed
the largest and the smallest but
preserved the mean, just as Bumpus
had said. In the males, however, the
pressure of the storm was directional,
pushing the birds toward smaller size. 1
The reanalysis of Bumpus’s classic
data helped inspire the Grants’ first trip
to the Galapagos.”

BRAK

FINCH

Slide 36 Bumpus’s sparrow data

NOTES:
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Anatomical abnormalities &
schizophrenia

Slide 37 Anatomical abnormalities &
schizophrenia

Case 2.2: 15 pairs of twins, paired f test
Display 2.2

Differences in volumes (cm®) of left hippecampus in fifteen sets of
monozygotic twins where one twin is affected by schizophrenia

iz : - — —

Average: 0.199
1o 12 0s) 2] sample 8D 0238
2 144 163 .19 a o 15
3 1.56 147 009 D
4 1.58 1.39 0.19 o | 23479
5 2.06 1.93 [Nk 1| o
6 166 1.26 040 2|3
7 175 171 004 3
& 177 67 010 alo
9 L78 28 0.50 s o9
10 1.92 B8 007 6|7
1 125 102 0.23 7
12 193 134 0.59
13 2.04 20 002 -
14 162 1,50 003 ] Legend: | 6 | 7 represents 0.67 em?
15 2.08 197 011

NOTES:

Case 2.2 Statistical Summary

Slide 38 Case 2.2 Statistical Summary

Sleuth, p. 31

There is substantial evidence that the mean
difference in the left hippocampus volumes
between schizophrenic individuals and their
nonschizophrenic twins is nonzero (two-sided
p-value = 0.006, from a paired t test). It is
estimated that the the mean volume is 0.20
cm?® smaller for thoose with schizophrenia
(about 11% smaller). A 95% confidence
intesrval for the difference is from 0.07 to 0.33
cm*

NOTES:

Statistical Summary includes
elements of Fisher, Neyman-

Slide 39 Statistical Summary includes
elements of Fisher, Neyman-Pearson &
Deming

oFisher
» Randomization & causation
> P values
eNeyman-Pearson
» Critical values: significant vs. Non-
significant
> 95% confidence intervals
®A. E. Deming effect sizes

&
T

http:/iwww.stat.ucla.edu/history/people/

Pearson & Deming
./

NOTES:
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Confidence Intervals: Egon
Pearson’s major contribution

http://bmj.com/cgi/content/full/322/7280/0

Interpreting the sice of 4 prualue

PVALUE

Slide 40 Confidence Intervals: Egon
Pearson’s major contribution

NOTES:

Is there evidence of a differcaee?

Don’t use the Neyman
Pearson decision rule
approach ‘significant’ vs
‘Non significant’

EEUD01T1

Confidence Intervals: Egon
Pearson’s major contribution

intervals for 7, the deflection of light around the

See Deb
Mayo’s
book ‘Error

- & the
) Growth of
Knowledg

EEOS611

Slide 41 Confidence Intervals: Egon
Pearson’s major contribution

NOTES:

Background information on
the one-sample t-tools and
paired t-test

Slide 42 Background information on the
one-sample t-tools and paired t-test

NOTES:

Page 14 of 20
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Disglay 13

PO AT
PISTRIED TR

No matter what the
underlying distribution,
the sampling
distribution of the
sample averages will

ses ses be ‘more nearly
normal’ than the
underlying distribution.

SANPLINVG
R IGE This is a result of the
Central Limit
Theorem.

http://mathworld.wolfram.com/CentralLimitTheorem.html

Slide 43

NOTES:

DHsplay 2.4

The relationship between the population distribution and the sampling
distribution of the average in random sampling

POPULATION 2
DISTRIBUTION |

SAMPLING
DISTRIBUTION OF
THE AVERAGE

EEOS611

Slide 44

NOTES:

Expressing uncertainty
X =8, >4 choices for & {del}

e + standard deviation
» Advantage: expressed in the same units as the parameter being estimated
» Not a good choice, some statisticians argue that it is inappropriate for a sample
statistic
e + standard error, also called the standard deviation of the average or sd
of the mean or the standard error of the mean
» SE(x ) = s/ Vn, df.=(n-1)
» Advantage: statistically appropriate
» Needs the sample size for interpretation
e + half the 95% confidence interval
» Assumes an underlying model for the data
» For asymmentric 95% CI’s in the statistics natural scale, provide the upper and
lower 95% CI (for transformed data and results of Monte Carlo simuations
e Analytical precision of the instrument or technique
» E.g., the Chl a method has a certain analytical precision. This is rarely acceptable.
» Hurlbert's E(S,y,), @ measure of species richness, has an analytical precision
based on the sampling properties of the hypergeometric distribution.
» Polling data has an analytical precision based on var=p*(1-p), but this rarely
expresses the other sources of variability in a poll

Slide 45 Expressing uncertainty

NOTES:
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The Z-ratio & t-ratio based on a
sample average

® Z-ratio = (Estimate - Parameter)/
SD(Estimate)

» If the sampling distribution is normal, than the
sampling distribution of Z is standard normal

» Mean zero and standard deviation of 1

» Z distribution provided in Appendix A.1

» t-ratio = (Estimate - Parameter)/SE (Estimate)

» If < is the average in a random sample of size n
from a normally distributed population, the
sampling distribution of ¢ is described by the
Student’s t distribution on n-7 degrees of freedom

EEOS611

Slide 46 The Z-ratio & t-ratio based on a
sample average

NOTES:

Display 2.5

Student’s t-distribution on 14 degrees of freedom

Slide 47

NOTES:

Degrees of freedom Box 1.2

Sutistical tests of significance often call upon the concept of degrees of freedom. A
formal definition is the following: “The degrees of freedom of a model for expected
values of random variables is the excess of the number of varishles [observations]
ower the number of parameters in the model™ (Kotz & Johnson, 1982).

In practical terms, the number of degrees of freedom associated with a statistic
is equal to the number of its independent components, fe. the total number of
components used in the calculstion minus the number of parameters one had 1o
estimale from the data before computing the statistic. For example, the number of
degrees of freedom associated with a vasiance is the number of observations minus
one (noted v = - 1) # components {x, - %) are used in the calculation, bul one
degree of freedom is Jost because the mean of the statistical population is estimated
from the sample data; this is a prerequisite before estimating the variance.

There is u different ¢ distribution for each number of degrees of freedom. The
same is true for the F and 1’ families of distributions, for example. So, the number
of degrees of freedom determines which statistical distribution, in these families (1,
Foor f}\ should be used as the reference for a given test of significance. Degrees of
freedom are discussed again in Chapter 6 with respect o the analysis of
contingency tables.

Legendre & Legendre (1989) Numerical Ecology 2nd Ed.

Slide 48

NOTES:
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Slide 49 Student’s t and sample size

Student’s t and sample size

3 replicates, 95% C.l. is * 4.3 standard errors

— NOTES:

b

Student's t

RN W Ry
~
=)}

-
B
e
N

1Ly |

Degrees of Freedom EEOS611

Slide 50 95% CI for the mean difference

95% CI for the mean difference

Nicenlauv 2 R (nana 27\ aniqnv\hrenia Study

NOTES:

Slide 51 A t-ratio for two-sample inference

A t-ratio for two-sample NOTES:
inference

Page 17 of 20
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Slide 52 Sampling distribution of the

Sampling distribution of the difference of .
averages difference of averages
Display 2.7 (38): Application of the Central Limit
Theorem
NOTES:

b

POPULATION —— d
DISTRIBUTIONS ‘.
[ﬂ] [[[ n
1
e

SAMPLING DISTRIBUTION ——
OF THE IFFERENCE The shept o e ey
BETWEEN AVERAGES Petyb e

Slide 53 Pooled standard deviation

Pooled standard deviation
& standard error for the difference
NOTES:

This estimate ssumes equal variances (Sleuth p 39)
~.

df. = m+n-2.

3 ]
(ny=1)s;=+ (my=1)s5"

(ny+ny=-2)
s

1 1
= § .
L4 ny ny

( SE(F,-F) —_— —

EEOS611

Slide 54 SE of difference

SE of difference
Caleulation of the pooled estimate of S and the standard error for the
NOTES:

difference hetween two sample averages: Bumpus® data

Giremp

(1) SUMMARY STATISTIOS
Sampde
" Average iin) SI i)

11 Died
2 Survived

[:j THE POOLED SD )

euth
lay 2.8

S 40) EEOS611

SEY2-Y 0
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95% Confidence Limits

For the difference between means

|(’ 1001~ et)% Confidence Limits for the Difference Between Means \
(F1-Fp) + tyil-a2)SEF,-F).
/‘n

“A 95% confidence interval will contain the parameter if the t-ratio
from the observed data happens to be one of those in the middle
95% of the sampling distribution. Since 95% of all possible pairs
of samples lead to such t-ratios, it is safe to say that the
procedure of constructing a 95% Cl is successful in 95% of its
applications.”

It is incorrect to say that there is a 95% probability that the
true parameter is within the 95% CI. That probability is
either 0 or 1. Bayesians have a different interpretation of
p values.

Slide 55 95% Confidence Limits

NOTES:

Cl for difference of means
Sleuth 2e Display 2.9 (41)

Construction of a 95% confidence interval for the difference between the
mean humerns lengths of sparrows that died and that survived

Group n Average (in.) S (in.)
1: Died 24 72792 02354 1
2: Survived 35 T3R00 01984

Slide 56 CI for difference of means

NOTES:

degrees of freedom = 24 + 35 - 2 = 57 o Vo
55(.975) = 2.002 « | 1

Lkl i \ 37 degre
Half-width = (2.002)(0.00567) = 0,01 136
Lower 95% confidence limit = 0.01008 - 0.01136 = -0.00128 inches

Upper 95% confidence limit = 0.01008 + 0.01136 = 0.02144 inches

Yy-Y¥; = .73800-.72792 = 0.01008 From Display
el
SE(Y;-Y ) = 000567 inches < - 2.8
v

Testing a hypotheses about the
difference of means

(Y — ¥ ) — [Hypothesized value for (p2 — 121)]

Slide 57 Testing a hypotheses about the
difference of means

t-statistic = —
SE(¥; —¥)

“The p-value for a t-test is a probability of obtaining
a t-ratio as extreme or more extreme than the t-
statistic in its evidence against the null hypothesis, if
the null hypothesis is correct.” (Sleuth 2nd ed. p.
42). [Bayesians do not use this interpretation.]

A large p value means that the study is not capable
of excluding the null hypothesis as a possible
explanation ... It is wrong to conclude that the

null hypothesis is true.
EEOS611

NOTES:

Page 19 of 20




Class 3: Chapter 2

Display 2.10

Was the difference consistent with chance?

The t-test for the hypothesis that the mean humerus lengths of sparrows
that died is the same as the mean for sparrows that survived

Group n Average (in.) S (in.)

1: Died 24 2792 0235
2: Survived 35 73800 01984
¥,-Y, = .73800-.72792 = 0.01008
SE(Y,-¥)) = 0.00567 inches «

degrees of freedom =24 + 35 - 2= 57 &7

0.01008 - 0.0

0.00567 1178

t-statistic

7 rom tables of the t-distribution ™,
P=960 « with 57 degre frecdom: |
\ 1778 - 1of, 060) 4

1-sided p-value = .040 o 2-sided p-value = 2(.040) = 080

Slide S8 Display 2.10

NOTES:

Randomization distribution

Can be done with Matlab & R, not SPSS

Display 2.11, page 46
oCreativity data

» Randomly shuffle (500 times) the
membership in intrinsic and extrinsi-
groups

» Calculate the t-ratio for each randon
shuffle owd

» Order the value of the t ratios from
smallest to largest

» For a 1-sided test, calculate how ma
the t ratios were larger (or smaller) t
the observed t ratio, add 1, and divic
the number of randomizations

» For a 2-sided test, find the number ¢
ratios whose absolute value exceed
observed t ratios, add 1, and divide
number of randomizations

300 20 -0 00 +LD +20 430
Value of the i-ratio

Slide 59 Randomization distribution

NOTES:

Randomization doesn’t solve
problems with unequal variance

eRandomization is often
superior to the t-distribution
for 2-sample problems

e®Randomization does not
remedy violations of the
assumptions of the t test.

» The most common problem with
Student’s t test is the so-called
Fisher-Behrens problem, testing the
difference in the average if the
distributions have different variances

> This is an open question

» Neither nonparametric approaches
(see Chapter 4) nor randomization
provide a clear solution

EEOS611

Slide 60 Randomization doesn’t solve
problems with unequal variance
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